### ### Planet PostGIS

Welcome to Planet PostGIS

November 19, 2024

Crunchy Data

Loading the World! OpenStreetMap Import In Under 4 Hours

The OpenStreetMap (OSM) database builds almost 750GB of location data from a single file download. OSM notoriously takes a full day to run. A fresh open street map load involves both a massive write process and large index builds. It is a great performance stress-test bulk load for any Postgres system. I use it to stress the latest PostgreSQL versions and state-of-the-art hardware. The stress test validates new tuning tricks and identifies performance regressions.

Two years ago, I presented (video / slides) at PostGIS Day on challenges of this workload. In honor of this week’s PostGIS Day 2024, I’ve run the same benchmark on Postgres 17 and the very latest hardware. The findings:

  • PostgreSQL keeps getting better! Core improvements sped up index building in particular.
  • The osm2pgsql loader got better too! New takes on indexing speed things up.
  • Hardware keeps getting better! It has been two years since my last report and the state-of-the-art has advanced.

Tune Your Instrument

First, we are using bare metal hardware—a server with 128GB RAM—so so let’s tune Postgres for loading and to match that server:

max_wal_size = 256GB
shared_buffers = 48GB
effective_cache_size = 64GB
maintenance_work_mem = 20GB
work_mem = 1GB

Second, let’s prioritize bulk load. The following settings do not make sense for a live system under read/write load, but they will improve performance for this bulk load scenario:

checkpoint_timeout = 60min
synchronous_commit = off
# if you don't have replication:
wal_level = minimal
max_wal_senders = 0
# if you believe my testing these make things
# faster too
fsync = off
autovacuum = off
full_page_writes = off

It’s also possible to tweak the background writer for the particular case of massive data ingestion, but for bulk loads without concurrency it doesn’t make a large difference.

How PostgreSQL has Improved

In 2022, testing that year's new AMD AM5 hardware loaded the data in just under 8 hours with Postgres 14. Today the amount of data in the OSM Planet files has grown another 14%. Testing with Postgres 17 still halves the load time, with the biggest drops coming from software improvements in the PG14-16 time-frame.

osm building time

The benchmark orchestration and metrics framework here is my pgbench-tools. Full hardware details are published to GeekBench.

GIST Index Building in PostgreSQL 15

The biggest PostgreSQL speed gains are from improvements in the GIST index building code.

The new code pre-sorts index pages before merging them, and for large GIST index builds the performance speed-up can be substantial, as reported by the author of osm2pgsql.

My tests showed going from PostgreSQL 14 to 15 delivered:

  • 16% speedup
  • 15% size reduction
  • 86% GIST index build speedup!

osm index building time

There have been further improvements in PostgreSQL 16 and 17 in B-Tree index building, but this osm2pgsql benchmark does not really show them. The GIST index time build times wash out the other index builds.

How osm2pgsql has improved

In Q3 2022, osm2pgsql 1.7 made a technique called the Middle Way Node Index ID Shift the new default.

Middle Way Node Index ID Shift is a clever design approach that compresses the database's largest index, trading off lookup and update performance for a smaller footprint. It uses a Partial Index to merge nearby values together into less fine grained sections. When an index is used frequently, this would waste too many CPU cycles. Similar to hash bucket collision, partial indexes have to constantly exclude non-matched items. That chews through extra CPU on every read. In addition, because individual blocks hold so many more values, the locking footprint for updates increases proportionately. However, for large but infrequently used indexes like this one, those are satisfactory trade-offs.

Applying that improvement dropped my loading times by 37% and plummeted the database size from 1000GB to under 650GB. Total time at the terabyte size had crept upward to near 10 hours. The speed-up drove it back below 6 hours.

The osm2pgsql manual shows the details in its Update for Expert Users. I highly recommend that section and its Improving the middle blog entry. It's a great study of how PG's skinnable indexing system lets applications optimize for their exact workload.

How hardware has improved

SSD Write Speed

During data import, the osm2pgsql workload writes heavily at medium queue depths for hours. The best results come from SSDs with oversized SLC caches that also balance cleanup compaction of that cache. The later CREATE TABLE AS (CTAS) sections of the build reach its peak read/write speeds.

I saw 11GB/s from a Crucial T705 PCIe 5.0 drive the week (foreshadowing!) I was running that with an Intel i9-14900K:

read write for osm

osm2pgsql has a tuning parameter named --number-processes that guides how many parallel operations the code tries to spawn.

For the server and memory I used in this benchmark, increasing--number-processesfrom my earlier 2 to 5 worked well. However, be careful: you can easily go too far! Bumping up this parameter increases memory usage too. Going wild on the concurrent work will run you out of memory and put you into the hands of the Linux Out of Memory (OOM) killer.

Processor advances

Obviously, every year processors get a little better, but they do so in different ways and at different rates.

For later 2023 and testing against PostgreSQL 15 and 16, an Intel i7-13600K overtook the earlier AMD R5 7700X. There was another small bump in 2024 upgrading to an i9-14900K.

But this is a demanding regression test workload, and it only took a few weeks of running the OSM workload to trigger the i9-14900K’s voltage bugs to the point where my damaged CPU could not even finish the test.

Thankfully I was able to step away from those issues when AMD's 9600X launched. Here's the latest results from PG17 on an AMD 9600X, with the same SK41 2TB drive as I tested in 2022 for my PostGIS Day talk.

My best OSM import results to date

2024-10-15 10:03:41  [00] Reading input files done in 7851s (2h 10m 51s).
2024-10-15 10:03:41  [00]   Processed 9335778934 nodes in 490s (8m 10s) - 19053k/s
2024-10-15 10:03:41  [00]   Processed 1044011263 ways in 4301s (1h 11m 41s) - 243k/s
2024-10-15 10:03:41  [00]   Processed 12435485 relations in 3060s (51m 0s) - 4k/s
2024-10-15 10:03:41  [00] Overall memory usage: peak=158292MByte current=157746MByte...
2024-10-15 11:32:13  [00] osm2pgsql took 13162s (3h 39m 22s) overall. f

Completed in less than 4 hours!

PostgreSQL 17 is about 3% better on this benchmark than PostgreSQL 16 when replication is used, thanks to improvements in the WAL infrastructure in PostgreSQL 17.

I look forward to following up on this benchmark in more detail, after my scorched Intel system is fully running again! Like the speed of the Postgres ecosystem, the pile of hardware I've benchmarked to death grows every year.

by Greg Smith (Greg.Smith@crunchydata.com) at November 19, 2024 02:30 PM

September 26, 2024

PostGIS Development

PostGIS 3.5.0

The PostGIS Team is pleased to release PostGIS 3.5.0! Best Served with PostgreSQL 17 RC1 and GEOS 3.13.0.

This version requires PostgreSQL 12 - 17, GEOS 3.8 or higher, and Proj 6.1+. To take advantage of all features, GEOS 3.12+ is needed. SFCGAL 1.4+ is needed to enable postgis_sfcgal support. To take advantage of all SFCGAL features, SFCGAL 1.5 is needed.

3.5.0

This release is a feature release that includes bug fixes since PostGIS 3.4.3, new features, and a few breaking changes.

by Regina Obe at September 26, 2024 12:00 AM

September 25, 2024

Crunchy Data

Vehicle Routing with PostGIS and Overture Data

The Overture Maps collection of data is enormous, encompassing over 300 million transportation segments, 2.3 billion building footprints, 53 million points of interest, and a rich collection of cartographic features as well. It is a consistent global data set, but it is intimidatingly large -- what can a person do with such a thing?

Building cartographic products is the obvious thing, but what about the less obvious. With an analytical engine like PostgreSQL and Crunchy Bridge for Analytics, what is possible? Well turns out, a lot of things.

Crunchy Data recently joined the Overture Maps Foundation as a continuation of support for open spatial data management and mapping. We are excited about building on what is possible bringing the power of Postgres to Overture open map data.

Routing with Overture

Back to thinking about what can Overture and Postgres/PostGIS do together. How about vehicle routing?

alt

Not global routing, but something more tractable, and perhaps more useful (how many people have global routing problems?) such as local routing. In this walk-through we will:

  • extract enough Overture transportation data to perform useful local routing;
  • condition that data to be usable by the pgRouting engine; and,
  • actually run some routing queries.

Database Setup

For this example, we will be using the new Geospatial features of Crunchy Bridge for Analytics.

When creating a new cluster, click the drop-down option and select an "Analytics Cluster".

alt

Log in to your cluster as postgres and enable the spatial analytics extension:

SET pgaudit.log TO 'none';

-- create the spatial analytics extension and postgis:
CREATE EXTENSION crunchy_spatial_analytics CASCADE;

-- to re-enable audit logging in the current session
RESET pgaudit.log;

Then enable the pgrouting extension.

CREATE EXTENSION pgrouting;

The database is ready to go!

Data Import

One of the things that makes the Overture data sets so enticing is the way they are hosted: in GeoParquet format on S3 and Azure object storage.

This alone would not be a big deal, but since spring 2024 the Overture data is spatially sorted. That means it is possible for a client with GeoParquet support to pull out a spatial subset of the data without having to scan the whole collection. We can get the 20 thousand features we want, without having to read through the whole 300 million feature collection.

The trickiest part of the data access is figuring out the URL to pull the Overture data from. The data are released approximately monthly, and each theme consists of multiple parquet files. For our purposes though, we can use the * character in the URL and the analytics code treats the collection of files as a single data set.

CREATE FOREIGN TABLE ov_segments ()
    SERVER crunchy_lake_analytics
    OPTIONS (path 's3://overturemaps-us-west-2/release/2024-08-20.0/theme=transportation/type=segment/*.parquet');

This SQL does not initiate a download, it creates a "foreign table", similar to a view, but in which the data is not stored locally on the database server. In this case, of course, the data resides on S3, and nothing has been downloaded yet.

So, we do not want to run SELECT * FROM ov_segments, for example, because that would download the entire contents of the collection. Instead, we should subset the download, and because the data are spatially sorted, we can do it efficiently with a spatial filter.

-- Use the same table definition as the FDW table
CREATE TABLE ov_segments_local ()
    INHERITS (ov_segments);

-- Query only those features that are within our area of interest
INSERT INTO ov_segments_local
    SELECT ov_segments.*
    FROM
        ov_segments,
        (VALUES ('LINESTRING(-123.455 48.391,-123.283 48.522)'::geometry)) AS t(q)
    WHERE (bbox).xmin >= ST_XMin(q)
      AND (bbox).xmax <= ST_XMax(q)
      AND (bbox).ymin >= ST_YMin(q)
      AND (bbox).ymax <= ST_YMax(q);

Despite addressing a data collection with 300 million records, the query returns 20 thousand records in a few seconds.

Data Structure

We have transportation segments! Are we ready to start routing? Not yet.

We have several data structuring tasks to get the data ready for vehicle routing:

  • We need to further filter the segments down to those classes that participate in the vehicle network. No paths, no tracks, no segments currently under construction.
  • We need to convert the speed and road class attribution in Overture to a "cost" for pgRouting to apply to each edge.
  • We need to change the physical structure of the Overture segments to the pure edge/node structure that is used by pgRouting, and identify one-way segments.
  • We need to change the unique Overture UUIDs into integers for pgRouting.

The starting point for data structuring is the Overture segment feature, and it is a complex one!

-- Get a pretty JSON view of the data structure
SELECT row_to_json(ov_segments_local, true)
  FROM ov_segments_local
  WHERE id = '08828d1aac3fffff043df239fe1d3069';
Full JSON structure of a segment
{
  "id":"08828d1aac3fffff043df239fe1d3069",
  "geometry":{
    "type":"LineString",
    "coordinates":[[-123.3617848,48.4325098], ...[-123.3626606,48.4352395]]},
  "bbox":{
    "xmin":-123.3627,"xmax":-123.3618,
    "ymin":48.4325,"ymax":48.43525},
  "version":0,
  "sources":[
    {"property":"routes","dataset":"OpenStreetMap","record_id":"r8747097","update_time":null,"confidence":null},{"property":"","dataset":"OpenStreetMap","record_id":"w476265027","update_time":null,"confidence":null},
    {"property":"","dataset":"OpenStreetMap","record_id":"w494031748","update_time":null,"confidence":null}],
  "subtype":"road",
  "class":"primary",
  "names":{
    "primary":"BlanshardStreet",
    "common":null,
    "rules":[
      {"variant":"common","language":null,"value":"BlanshardStreet","between":null,"side":null}]},
  "connector_ids":[
    "08f28d1aac38818d0429ea4e482966af",
    "08f28d1aac38818d0429ea4e482246ae",
    "08f28d1aac28d6680473cb2c125fcd98"],
  "connectors":[
    {"connector_id":"08f28d1aac38818d0429ea4e482966af","at":0},
    {"connector_id":"08f28d1aac38818d0429ea4e482246ae","at":0.3},
    {"connector_id":"08f28d1aac28d6680473cb2c125fcd98","at":1}],
  "routes":[
    {"name":"Highway17(BC)(North)","network":"CA:BC","ref":"17","symbol":"https://upload.wikimedia.org/wikipedia/commons/7/76/BC-17.svg","wikidata":"Q918890","between":[0.856363,1]}],
  "subclass":null,
  "subclass_rules":null,
  "access_restrictions":[{
    "access_type":
      "denied",
      "when":{
        "during":null,
        "heading":"backward",
        "using":null,
        "recognized":null,
        "mode":null,
        "vehicle":null},
      "between":null}],
  "level_rules":null,
  "destinations":null,
  "prohibited_transitions":null,
  "road_surface":[{"value":"paved","between":null}],
  "road_flags":null,
  "speed_limits":[{
    "min_speed":null,
    "max_speed":{
      "value":50,
      "unit":"km/h"},
    "is_max_speed_variable":null,
    "when":null,
    "between":null}],
  "width_rules":null,
  "theme":"transportation",
  "type":"segment"
}

Filtering Class for Vehicle Routing

Fortunately we can do all our filtering for vehicle segments by using the class attribute of segments.

There are a lot of combinations of class and subclass:

SELECT DISTINCT class, subclass
  FROM ov_segments_local
  ORDER BY 1,2;
All the combinations of class and subclass
     class     |    subclass
---------------+----------------
 bridleway     |
 cycleway      | cycle_crossing
 cycleway      |
 footway       | crosswalk
 footway       | sidewalk
 footway       |
 living_street |
 motorway      | link
 motorway      |
 path          |
 pedestrian    |
 primary       | link
 primary       |
 residential   |
 secondary     | link
 secondary     |
 service       | alley
 service       | driveway
 service       | parking_aisle
 service       |
 steps         |
 tertiary      | link
 tertiary      |
 track         |
 trunk         | link
 trunk         |
 unclassified  |
               |

And of those many combinations, there are many segments we should exclude--paths, pedestrian, bridleways, and more!

alt

By restricting to a few classes--motorway, primary, residential, secondary, tertiary, trunk, unclassified--results in a network that has only vehicle segments.

alt

Converting Speed to Cost

Many of the segments in our collection of vehicle segments have a speed limit on them, but the model is a little complicated. Because segments can be quite long it is possible (though rare) for a single segment to have multiple speeds. So the Overture model for speed limits looks like this:

  "speed_limits": [{
     "min_speed": null,
     "max_speed": {
        "value": 50,
        "unit": "km/h"},
     "is_max_speed_variable": null,
     "when": null,
     "between": null}],

For simplicity, we will use the first available speed limit in this example, and apply it to the whole segment. To be more precise, we would split the segment into one edge for each speed limit.

For many segments, there is no speed limit provided, so for those we can use defaults and provide different defaults for different classes: a default speed limit for a trunk road might be 90km/hr, and a default for a residential street might be 40km/hr.

So, converting the speed limits to cost, then looks like this:

  • Find the speed limit if there is one.
    • Apply a class based default if there is not.
  • Convert any "miles per hour" limits to "kilometers per hour"
  • Convert to "meters per second".
  • Calculate the length of the segment in meters.
  • Calculate the time required to traverse the segment, in seconds.

The last step is the fun one: each segment is costed based on how long it takes to traverse it. This way a 1 kilometer segment with a speed limit of 100 km/h has half the cost of the same segment with a 50 km/h limit.

PL/PgSQL functions to convert speed limits into cost
--
-- Deal with kmph/mph units, and fill in any null
-- speed information with sensible defaults based
-- on the segment class.
--
CREATE OR REPLACE FUNCTION pgr_segment_kmph(speed float8, unit text, class text)
RETURNS FLOAT8 AS
$$
DECLARE
    default_kmph FLOAT8 := 40;
BEGIN

    -- Convert mph to kmph where necessary
    IF unit = 'mph' THEN
        speed := speed * 1.60934;
    END IF;

    IF speed IS NOT NULL THEN
    	RETURN speed;
    END IF;

    -- Apply some defaults
    -- Should not be driving fast on service roads
    IF class = 'service' THEN
        speed := 20;
    -- Or on residential roads
    ELSIF class = 'residential' THEN
        speed := 30;
    -- Everywhere else, use the default
    ELSE
        speed := coalesce(speed, default_kmph);
    END IF;

    RETURN speed;

END;
$$ LANGUAGE 'plpgsql';

--
-- The cost to traverse a segment is the number of
-- seconds needed to traverse it, so distance over speed.
--
CREATE OR REPLACE FUNCTION pgr_segment_cost(geom geometry, speed_kmph float8)
RETURNS FLOAT8 AS
$$
DECLARE
    length_meters FLOAT8;
    default_kmph FLOAT8 := 40;
    kmph FLOAT8;
    cost FLOAT8;
    meters_per_second FLOAT;
BEGIN
    -- Geography length is in meters
    length_meters := ST_Length(geom::geography);

    -- Convert km/hour into meters/second
    meters_per_second := speed_kmph * 1000.0 / 3600.0;

    -- Segment cost is the number of seconds
    -- needed to traverse the segment
    RETURN length_meters / meters_per_second;
END;
$$ LANGUAGE 'plpgsql';

Identifying One-way Segments

One of the strangest aspects of the Overture model is the handling of one-way streets. Most models have a boolean "one way" flag, or maybe a "direction" attribute with "forward", "backward" and "both".

Overture models directionality as one in a number of possible "restrictions" on the segment, here's the relevant JSON from our example segment.

  "access_restrictions":[{
    "access_type":
      "denied",
      "when":{
        "during":null,
        "heading":"backward",
        "using":null,
        "recognized":null,
        "mode":null,
        "vehicle":null},
      "between":null}],

So every segment has a list of restrictions, and "heading" is one of them, but also mode of transport, vehicle type, time period, and others. Because one-way is a pretty important restriction in a route planner, we cannot simply check the first restriction, we will have to actually check every restriction on a segment and only set the "one way" flag if the "heading" restricting is non-null.

Converting from Overture Segments to pgRouting Edges

The most challenging aspect of preparing the Overture segments for pgRouting is the model transformation between "segments" and "edges".

The pgRouting graph is a simple structure of vertices and edges. Vertices are points and edges are defined as joining two vertices, so any edge can be characterized by stating its "source" and "target" vertex.

alt

In the Overture graph, on the other hand, every segment connects at least two connectors.

alt

So "source" and "target" connector alone are not enough to characterize a segment. So Overture uses a list of connectors on the edge.

  "connectors":[
    {"connector_id":"08f28d1aac38818d0429ea4e482966af","at":0},
    {"connector_id":"08f28d1aac38818d0429ea4e482246ae","at":0.3},
    {"connector_id":"08f28d1aac28d6680473cb2c125fcd98","at":1}],

The unique identifier for each connector is given, and the at attribute provides the proportion along the edge where the connector appears. The 0 connector is at the start, the 1 connector is at the end, and the 0.3 connector is 30% of the distance between the start and the end.

So to convert from Overture "segments" to pgRouting "edges", we just need to iterate over the connectors list and apply the ST_LineSubstring function to chop the original segment into the right edges.

A PL/PgSQL function to chop Overture segments into edges
--
-- Create a simple table that reflects some of the
-- input we have generated (speed, directionality)
-- and mirrors some other useful info (surface,
-- primary name) for mapping purposes.
-- Most importantly, carry out the chopping of segments
-- into edges with only two graph connectors, one at
-- the start and one at the end.
--
CREATE OR REPLACE FUNCTION ov_to_pgr(segment ov_segments)
RETURNS TABLE(
    id text,
    geometry geometry(LineString, 4326),
    connector_source text,
    connector_target text,
    class text,
    subclass text,
    surface text,
    speed_kmph real,
    primary_name text,
    one_way boolean
) AS
$$
DECLARE
    n integer;
    connector_to float8;
    connector_from float8 := 0.0;
BEGIN

    -- Carry over some attributes directly
    id := segment.id;
    class := segment.class;
    subclass := segment.subclass;
    primary_name := (segment.names).primary;
    -- Take the first surface we see rather than
    -- chopping up the segment here
    surface := segment.road_surface[1].value;

	speed_kmph := pgr_segment_kmph(segment.speed_limits[1].max_speed.value, segment.speed_limits[1].max_speed.unit, segment.class);

    -- Most edges are two-way, but a few are one-way, flag
    -- those so we can adjust the cost later
    one_way := false;
    IF segment.access_restrictions IS NOT NULL THEN

    	-- Overture uses "backward" access restrictions
    	-- for one-way segments, and the restriction can
    	-- show up anywhere in the list, so...
        n := array_length(segment.access_restrictions, 1);
        FOR i IN 1..n LOOP
            IF segment.access_restrictions[i].access_type = 'denied' AND segment.access_restrictions[i].when.heading = 'backward' THEN
                one_way := true;
                EXIT;
            END IF;
        END LOOP;
    END IF;

    -- Chop segments into edges with vertexes at
    -- the connectors. Each edge has two connectors
    -- (one at each end) so a list of 3 connectors
    -- implies outputting 2 edges.
    connector_target := segment.connectors[1].connector_id;
    connector_to := 0.0;
    n := array_length(segment.connectors, 1);
    FOR i IN 2..n LOOP

        -- Avoid emitting zero-length segments
        IF connector_to = segment.connectors[i].at THEN
            CONTINUE;
        END IF;
        connector_from := connector_to;
        connector_source := connector_target;
        connector_to := segment.connectors[i].at;
        connector_target := segment.connectors[i].connector_id;

        -- This is where we chop!
        geometry := ST_SetSRID(ST_LineSubstring(segment.geometry, connector_from, connector_to),4326);

        -- Table-valued output means the return fills
        -- in the output parameters for us magically,
        -- as long as we have used the correct variable
        -- names.
        RETURN NEXT;
    END LOOP;

END;
$$ LANGUAGE 'plpgsql';

Creating a table of Connectors

In order to actually run routing on our final data, we are going to need a table of network vertices, so that we can figure what "source" vertex and "target" vertex correspond to a particular pair of routing points.

It would seem that the Overture connector file would provide an easy method to get those points, but unfortunately I discovered while testing this process that the file is incomplete. Not all of the connectors referenced in the segments type appear in the connectors type.

Fortunately, there is another place a complete list of connectors appears: in the connectors attribute of the segments:

  "connectors":[
    {"connector_id":"08f28d1aac38818d0429ea4e482966af","at":0},
    {"connector_id":"08f28d1aac38818d0429ea4e482246ae","at":0.3},
    {"connector_id":"08f28d1aac28d6680473cb2c125fcd98","at":1}],

Using the segment geometry, and the connectors list, it is possible to materialize (with ST_LineLocatePoint)a complete list of all connectors associated with the segments in our tables.

A SQL query to generate connectors from connector list
DROP TABLE IF EXISTS pgr_connectors;
CREATE TABLE pgr_connectors AS
    WITH connectors AS (
        SELECT (unnest(connectors)).*, geometry
        FROM ov_segments_local
        WHERE class IN ('motorway', 'primary', 'residential', 'secondary', 'tertiary', 'trunk', 'unclassified')
    )
    -- Unfortunately a connector will show up on every segment
    -- it connects, so we need to dedupe the set, which can be costly
    -- for larger areas.
    SELECT DISTINCT ON (connector_id)
        nextval('pgr_connector_seq') AS vertex_id,
        connector_id,
        ST_SetSRID(ST_LineInterpolatePoint(geometry, at),4326)::geometry(point, 4326) AS geometry
    FROM connectors;

CREATE INDEX pgr_connectors_x ON pgr_connectors (connector_id);
CREATE INDEX pgr_connectors_geom_x ON pgr_connectors USING GIST (geometry);

Data Processing

I have outlined individual components, but thus far have not yet integrated them into a sequential process to convert raw Overture GeoParquet to pgRouting compatible tables.

Here is the complete process, roughly:

  • Create an FDW table ov_segments referencing the raw Overture files online.
  • Pull a local copy of that table, ov_segments_local, only for our area of interest.
  • Process the ov_segments_local table, chopping segments into edges, and copying some attributes of interest into a pgr_segments table.
  • Process the ov_segments_local table, pulling out a unique list of connectors and connector geometry into a pgr_connectors table.
  • Process the pgr_segments table, adding integer unique keys for edge and vertex identification, creating the final pgr_edges table ready for routing.

alt

All the functions and the overall process are available in the overture.sql files.

Routing

After all the work, we are ready to route, which should be straightforward, right? We have pgRouting data ready, with low costs on the fast streets and higher costs on the slow streets.

alt

Unfortunately there are still a few pieces of code left to write, because pgRouting provides a very low level generic graph solver and most people solving routing problems have more specific needs.

For example,

  • pgRouting expects the start- and end-points of a route to be specified using a vertex id, (like these red dots) but
  • most people working with spatial routing are dealing with start- and end-points that are coordinates (like the green triangle)

alt

So we need to start our routing function by translating from locations to vertex identifiers.

And also,

  • pgRouting returns route results as a list of edge ids, but
  • most people working with spatial routing want, at a minimum, a linestring representation of the route to put on a map.

So we need to end our routing function by joining the edge identifiers back to the edges table to create the route geometry.

alt

To drive the pgr_dijkstra() function, we need to provide a SQL statement that generates a list of edges and source/target vertices, and for this example, we pull all 13902 edges from the pgr_edges table.

The final function looks like this:

CREATE OR REPLACE FUNCTION pgr_routeline(pt0 geometry, pt1 geometry)
RETURNS TEXT AS
$$
DECLARE
    vertex0 bigint;
    vertex1 bigint;
    edges_sql text;
    result text;
BEGIN

    -- Lookup the nearest vertex to our start and end geometry
    SELECT vertex_id INTO vertex0 FROM pgr_connectors ORDER BY geometry <-> pt0 LIMIT 1;
    SELECT vertex_id INTO vertex1 FROM pgr_connectors ORDER BY geometry <-> pt1 LIMIT 1;
    RAISE DEBUG 'vertex0=% vertex1=%', vertex0, vertex1;

    --
    -- SQL to create a pgRouting graph
    -- This is as simple as they come.
    -- More complex approaches might
    --  * scale cost based on class
    --  * restrict edges based on box formed
    --    by start/end points
    --  * restrict edges based on class
    --
    edges_sql := 'SELECT
            edge_id AS id,
            source_vertex_id AS source,
            target_vertex_id AS target,
            cost, reverse_cost
        FROM pgr_edges';

    -- Run the Dijkstra shortest path and join back to edges
    -- to create the path geometry
    SELECT ST_AsGeoJSON(ST_Union(e.geometry))
        INTO result
        FROM pgr_dijkstra(edges_sql, vertex0, vertex1) pgr
        JOIN pgr_edges e
        ON e.edge_id = pgr.edge;

    RETURN result;

END;
$$ LANGUAGE 'plpgsql';

To run the function and get back the route, feed it two points located within the area of your downloaded data.

SELECT pgr_routeline(
    ST_Point(-123.37826,48.41976, 4326),
    ST_Point(-123.35214,48.43891, 4326));

Resources

by Paul Ramsey (Paul.Ramsey@crunchydata.com) at September 25, 2024 01:30 PM

September 16, 2024

PostGIS Development

PostGIS 3.5.0rc1

The PostGIS Team is pleased to release PostGIS 3.5.0rc1! Best Served with PostgreSQL 17 RC1 and GEOS 3.13.0.

This version requires PostgreSQL 12 - 17, GEOS 3.8 or higher, and Proj 6.1+. To take advantage of all features, GEOS 3.12+ is needed. SFCGAL 1.4+ is needed to enable postgis_sfcgal support. To take advantage of all SFCGAL features, SFCGAL 1.5 is needed.

3.5.0rc1

This release is a release candidate of a major release, it includes bug fixes since PostGIS 3.4.3 and new features.

Changes since 3.5.0beta1 are as follows:

  • #5779 Failures building in parallel mode (Sandro Santilli)
  • #5778, Sections missing in What’s new (Regina Obe)

by Regina Obe at September 16, 2024 12:00 AM

PostGIS Development

PostGIS 3.5.0beta1

The PostGIS Team is pleased to release PostGIS 3.5.0beta1! Best Served with PostgreSQL 17 RC1 and GEOS 3.13.0.

This version requires PostgreSQL 12 - 17, GEOS 3.8 or higher, and Proj 6.1+. To take advantage of all features, GEOS 3.12+ is needed. SFCGAL 1.4+ is needed to enable postgis_sfcgal support. To take advantage of all SFCGAL features, SFCGAL 1.5 is needed.

3.5.0beta1

This release is a beta of a major release, it includes bug fixes since PostGIS 3.4.3 and new features.

by Regina Obe at September 16, 2024 12:00 AM

September 09, 2024

Crunchy Data

PostGIS meets DuckDB: Crunchy Bridge for Analytics goes Spatial

Crunchy Data is excited to announce the next major feature release for Crunchy Bridge for Analytics: Geospatial Analytics.

We have developed a variety of features to connect Postgres and PostGIS to S3 and public web servers to make spatial data access easier than ever.

This release includes:

  • Creating an analytics table directly from a geospatial data set by providing only the URL, for ad-hoc queries and data transformations.
  • Creating a regular PostGIS table directly from a URL.
  • Automatic mapping of geospatial columns into PostGIS geometry type.
  • Support for GeoParquet, GeoJSON, Shapefile (zip), Geopackage, WKT in CSV, and more.
  • Delegate PostGIS functions and operators to DuckDB spatial for fast queries on GeoParquet.

Together, these make Crunchy Bridge for Analytics an easy-to-use and powerful platform for working with geospatial data.

Query almost any geospatial data set with one easy command

PostGIS is the most popular and versatile geospatial data processing tool available, and the underlying GEOS library powers most other geospatial applications. Crunchy has a long history in PostGIS and geospatial, and we’re lucky to count geospatial legends Paul Ramsey and Martin Davis (see: PostGIS, GEOS, JTS, pg_featureserv, pg_tileserv, and more) among our colleagues.

Crunchy Bridge for Analytics enhances PostgreSQL with the ability to run fast analytical queries on data files in S3 and public web servers, with queries accelerated using DuckDB and caching on local NVMe drives. DuckDB also has a spatial extension built on top of GEOS and inspired by PostGIS.

It was natural for us to look for ways in which we can take advantage of the capabilities offered by Bridge for Analytics for geospatial use cases. We soon realized that one of the challenges of geospatial data is the wide variety of formats and data sources, and the relative difficulty of getting them into PostgreSQL.

By leveraging the capabilities built into Bridge for Analytics, we’ve managed to simplify the experience of accessing any geospatial data set via s3 or https in PostgreSQL down to a very simple create foreign table command:

-- Create a table from the overture buildings data set,
-- auto-infers columns, caches GeoParquet files in the background
create foreign table ov_buildings ()
server crunchy_lake_analytics
options (path 's3://overturemaps-us-west-2/release/2024-08-20.0/theme=buildings/type=*/*.parquet');

-- Immediately start querying the >2 billion row data set,
-- uses range requests until files get cached
select (names).primary as building, st_area(geometry, true) as surface_m2
from ov_buildings
where (names).primary is not null
and (bbox).xmin <= 7.2275
and (bbox).xmax >= 3.3583
and (bbox).ymin <= 53.6316
and (bbox).ymax >= 50.7504
order by st_area(geometry) desc limit 1;
┌─────────────────────────┬───────────────────┐
│        building         │    surface_m2     │
├─────────────────────────┼───────────────────┤
│ Bloemenveiling Aalsmeer │ 449485.2894157285 │
└─────────────────────────┴───────────────────┘
(1 row)

Time: 10169.907 ms (00:10.170)

Queries on GeoParquet are significantly accelerated by DuckDB, and files will get automatically cached in the background. For instance, the ~600GB Overture data set can be fully cached on larger analytics clusters, which makes analytics tables a practical tool for building applications with Overture.

Support for geospatial formats is not limited to GeoParquet. You can directly create a table from Shapefile (in zip), GeoJSON, Geopackage, Geodatabase, KML, and many other file formats supported by the GDAL library, and you can use public URLs to get data directly from the source.

-- Load US state boundaries from a compressed TIGER/Line Shapefile
create foreign table state ()
server crunchy_lake_analytics
options (format 'gdal', path 'https://www2.census.gov/geo/tiger/TIGER2023/STATE/tl_2023_us_state.zip');

-- Inspect auto-inferred schema
\d state
                     Foreign table "public.state"
┌──────────┬──────────┬───────────┬──────────┬─────────┬─────────────┐
│  Column  │   Type   │ Collation │ Nullable │ Default │ FDW options │
├──────────┼──────────┼───────────┼──────────┼─────────┼─────────────┤
│ region   │ text     │           │          │         │             │
│ division │ text     │           │          │         │             │
...
│ geom     │ geometry │           │          │         │             │
└──────────┴──────────┴───────────┴──────────┴─────────┴─────────────┘
Server: crunchy_lake_analytics
FDW options: (path 'https://www2.census.gov/geo/tiger/TIGER2023/STATE/tl_2023_us_state.zip');

-- What are the biggest states?
select name, st_area(geom, true)/1000000 area_in_km2
from state
order by 2 desc limit 10;
┌────────────┬───────────────────┐
│    name    │    area_in_km2    │
├────────────┼───────────────────┤
│ Alaska     │ 1724364.048632004 │
│ Texas      │ 695668.3746231933 │
│ California │ 423965.0992563212 │
│ Montana    │ 380840.4022201886 │
│ New Mexico │ 314925.0846268172 │
│ Arizona    │ 295220.1394989747 │
│ Nevada     │ 286376.9475553515 │
│ Colorado   │ 269604.5427509235 │
│ Oregon     │ 254799.4066699504 │
│ Wyoming    │ 253326.2430649384 │
└────────────┴───────────────────┘
(10 rows)

Time: 802.659 ms

Queries on GDAL data sets are currently slower than on GeoParquet, but the files will be immediately cached on disk when creating the table, so they are only downloaded once. On very rare occasions when the server is replaced, or after the file was evicted from cache, the file is automatically re-downloaded on demand.

There are several existing tools for loading data into PostGIS, though they are relatively laborious, and usually involve downloading large files to your computer and subsequently re-uploading the output. The ogr_fdw extension by Paul is probably the most versatile geospatial data access option available for PostgreSQL, though it will re-request remote data files for every query and is hence more suitable for accessing remote databases and web services with filter pushdown.

Building geospatial data pipelines with PostGIS

Once you’ve created an analytics table, you can start building a data transformation pipeline to get the data into the shape you want via (materialized) views.

For instance, a very simple pipeline might look like:

-- Create an analytics table for ad-hoc queries and transformations
create foreign table state ()
server crunchy_lake_analytics
options (path 'https://www2.census.gov/geo/tiger/TIGER2023/STATE/tl_2023_us_state.zip');

-- Create a materialized view for rendering a simple bar chart with sub-millisecond query time
create materialized view states_by_size as
select stusps, name, st_area(geom, true)/1000000 area_in_km2 from state;

You can also combine multiple data sets with spatial joins and compose views:

-- National Forest System boundaries (Shapefile)
create foreign table forests ()
server crunchy_lake_analytics
options (path 'https://data.fs.usda.gov/geodata/edw/edw_resources/shp/S_USA.AdministrativeForest.zip');

-- Fire occurence points in the US (Shapefile)
create foreign table fires ()
server crunchy_lake_analytics
options (path 'https://data.fs.usda.gov/geodata/edw/edw_resources/shp/S_USA.MTBS_FIRE_OCCURRENCE_PT.zip');

-- Only consider fires in national forests in 2022
create view nfs_fires_in_2022 as
select fires.*, forests.adminfores
from forests, fires
where st_within(fires.geom, forests.geom)
and date_trunc('year', ig_date) = '2022-01-01';

-- Find the forests which had fires in 2022
create view forests_with_fires_in_2022 as
select *
from forests
where adminfores in (
  select adminfores from nfs_fires_in_2022
);

Finally, we also made it very straight-forward to create a regular heap table with a PostGIS geometry column directly from a public geospatial data set by setting the load_from option in a create table command.

-- Create a regular table with an index from a Shapefile zip (note: WITH uses = syntax)
create table forests ()
with (load_from = 'https://data.fs.usda.gov/geodata/edw/edw_resources/shp/S_USA.AdministrativeForest.zip');
-- Add a spatial index
create index on forests using gist (geom);

-- You can also load data into an existing table using COPY, assuming the schemas match
copy forests from 'https://data.fs.usda.gov/geodata/edw/edw_resources/shp/S_USA.AdministrativeForest.zip';

You can see we have a lot of options here, so some general guidance:

  • create foreign table + create view - for ad-hoc queries and transformations on current data
  • create foreign table + create materialized view + create index - for repeated selective queries on data sets that occasionally need to be refreshed
  • create table with load_from + create index - loading the table data directly into PostGIS as a one-off

Overall, our aim is to give you a powerful toolbox for geospatial data, while also simplifying common scenarios down to very simple operations (create foreign table, create view, start rendering).

Connecting QGIS to Crunchy Bridge for Analytics

Since Crunchy Bridge for Analytics is just PostgreSQL, you can directly create a connection to your Analytics cluster from QGIS and add your (foreign) tables and views as layers, which means you can very quickly go from geospatial data set to visualization.

For example, the 4 commands for creating the forest views from the previous section can give you a map of national forests which had fires in 2022 and where those fires occurred:

qgis from s3

Note that QGIS by default requires that the first column of the table is unique. This is quite often the case, but when it’s not you may need to create a view to reorder the columns or add a unique value.

PostGIS combined with DuckDB spatial

Under the covers, Crunchy Bridge for Analytics takes advantage of DuckDB spatial. It is an awesome DuckDB extension, though it is still in an early stage of development. We map PostGIS functions and operators to DuckDB spatial functions where possible to accelerate analytical queries, and otherwise pull geometries into PostGIS, such that any query works as expected.

By default, geometry values in analytics tables have SRID set to 0/unspecified. You can set the SRID using st_setsrid as usual to make functions such as st_distance return the right units, but that will happen in PostgreSQL and transferring the geometries from DuckDB to PostgreSQL might slow down some queries. On the other hand, you can easily transfer the data set into a regular table or materialized view with an index if needed.

For queries on (Geo)Parquet, the speedup from DuckDB can be quite significant, so it may be worth avoiding SRIDs. You can check explain verbose to see which part of the query is delegated to DuckDB.

Get started with Geospatial Analytics and tell us your thoughts!

We believe this initial geospatial analytics release helps to bridge the gap of going from raw geospatial data files into a structured/indexed PostGIS table. These new features can help bootstrap many geospatial applications.

We’re excited to share this new feature with customers and get feedback and continue to build out the next generation of spatial analytics.

Geospatial analytics is available today on Crunchy Bridge, and it only takes a few minutes to get started. See our spatial analytics documentation for additional details.

by Marco Slot (Marco.Slot@crunchydata.com) at September 09, 2024 02:00 PM

September 05, 2024

PostGIS Development

PostGIS 3.3.7

The PostGIS Team is pleased to release PostGIS 3.4.7! This is a bug fix release.

3.3.7

by Paul Ramsey at September 05, 2024 12:00 AM

September 04, 2024

PostGIS Development

PostGIS 3.4.3

The PostGIS Team is pleased to release PostGIS 3.4.3!

This version requires PostgreSQL 12-17, GEOS 3.8+, and Proj 6.1+. To take advantage of all features, GEOS 3.12+ is needed. To take advantage of all SFCGAL features, SFCGAL 1.5+ is needed.

3.4.3

by Paul Ramsey at September 04, 2024 12:00 AM

July 06, 2024

PostGIS Development

PostGIS 3.5.0alpha2

The PostGIS Team is pleased to release PostGIS 3.5.0alpha2! Best Served with PostgreSQL 17 Beta2 and GEOS 3.12.2.

This version requires PostgreSQL 12 - 17, GEOS 3.8 or higher, and Proj 6.1+. To take advantage of all features, GEOS 3.12+ is needed. SFCGAL 1.4-1.5 is needed to enable postgis_sfcgal support. To take advantage of all SFCGAL features, SFCGAL 1.5 is needed.

3.5.0alpha2

This release is an alpha of a major release, it includes bug fixes since PostGIS 3.4.2 and new features.

by Regina Obe at July 06, 2024 12:00 AM

July 04, 2024

PostGIS Development

PostGIS 3.5.0alpha1

The PostGIS Team is pleased to release PostGIS 3.5.0alpha1! Best Served with PostgreSQL 17 Beta2 and GEOS 3.12.2.

This version requires PostgreSQL 12 - 17, GEOS 3.8 or higher, and Proj 6.1+. To take advantage of all features, GEOS 3.12+ is needed. To take advantage of all SFCGAL features, SFCGAL 1.5.0+ is needed.

3.5.0alpha1

This release is an alpha of a major release, it includes bug fixes since PostGIS 3.4.2 and new features.

by Regina Obe at July 04, 2024 12:00 AM

May 23, 2024

Crunchy Data

Converting DMS to PostGIS Point Geometry

I love taking random spatial data and turning it into maps. Any location data can be put into PostGIS in a matter of minutes. Often when I’m working with data that humans collected, like historic locations or things that have not yet traditionally been done with computational data, I’ll find traditional Degrees, Minutes, Seconds (DMS) data. To get this into PostGIS and QGIS, you’ll need to convert this data to a different system for decimal degrees. There’s probably proprietary tools that will do this for you, but we can easily write our own code to do it. Let’s walk through a quick example today.

Let’s say I found myself with a list of coordinates, that look like this:

38°58′17″N 95°14′05″W

(this is the location of my town’s haunted hotel 👻)

This format of writing geographic coordinates is called DMS, Degrees, Minutes, Seconds (DMS). If you remember from 4th grade geography lessons, that is the latitude on the left there, representing N or S of the equator and longitude East or West of the Prime Meridian.

WKT & XY coordinates

PostGIS, and most computational spatial systems, work with a geographic system that is akin to an XY grid of the entire planet. Because it is XY, it is a longitude, latitude (X first) system.

postgis on xy globe

PostGIS utilizes with two kinds of geometry values:

  • WKT (Well-known text) where a point would look like this POINT(-126.4 45.32)
  • WKB (Well-known binary) where a point would look like this 0101000000000000000000F03F000000000000F03

Most often you’ll see the binary used to represent stored data and you can use a function, st_astext, to view or query it as text.

Converting coordinates to decimal degrees

To convert our traditional coordinates into decimals or WKT, we can use decimal math like this:

({long_degree}+({long_minutes}/60)+({long_seconds}/3600)

So for our location:

-- starting location
38°58′17″N 95°14′05″W

-- formula
38+(58/60)+(17/3600), 95+(14/60)+(05/3600)

-- switch the order since this is X first
-- make the Western quad negative
-- getting this result

 -95.2472222, 38.9713888

Regex Function for Making PostGIS Points out of DMS

If you have one location like this, you probably have a lot, so we’ll need a more sophisticated solution for our whole data set. You know if you need something done right, you ask Paul Ramsey. Paul worked with me on getting this function written that will convert DMS to PostGIS friendly (binary geometry) point data.

CREATE OR REPLACE FUNCTION dms_to_postgis_point(dms_text TEXT)
    RETURNS geometry AS
    $$
    DECLARE
        dms TEXT[] := regexp_match(dms_text, '(\d+)\D+(\d+)\D+(\d+)\D+([NS])\D+(\d+)\D+(\d+)\D+(\d+)\D+([EW])');
        lat float8;
        lon float8;
    BEGIN
        lat := dms[1]::float8 + dms[2]::float8/60 + dms[3]::float8/3600;
        lon := dms[5]::float8 + dms[6]::float8/60 + dms[7]::float8/3600;
        IF upper(dms[4]) = 'S' THEN
            lat := -1 * lat;
        END IF;

        IF upper(dms[8]) = 'W' THEN
            lon := -1 * lon;
        END IF;

        RETURN ST_Point(lon, lat, 4326);
    END;
    $$
    LANGUAGE 'plpgsql'
    IMMUTABLE
    STRICT;

Let’s do a quick test with our original point:

SELECT st_astext(dms_to_postgis_point('38°58′17″N 95°14′05″W'));

                  st_astext
---------------------------------------------
 POINT(-95.23472222222222 38.97138888888889)
(1 row)

Great, that works.

Creating a new column with your geometry

Now we can use built-in PostGIS functions to add a new geom column and run the function on our old lat_long column.

ALTER TABLE my_table ADD COLUMN geom geometry(Point);

UPDATE my_table SET geom = dms_to_postgis_point(lat_long);

Conclusion

PostGIS is just packed with so many cool functions to make sure you can turn anything into maps. Hope this helps you get started if you’re using traditional lat long data.

by Elizabeth Christensen (Elizabeth.Christensen@crunchydata.com) at May 23, 2024 05:00 PM

March 19, 2024

Crunchy Data

Inside PostGIS: Calculating Distance

Calculating distance is a core feature of a spatial database, and the central function in many analytical queries.

  • "How many houses are within the evacuation radius?"
  • "Which responder is closest to the call?"
  • "How many more miles until the school bus needs routine maintenance?"

PostGIS and any other spatial database let you answer these kinds of questions in SQL, using ST_Distance(geom1, geom2) to return a distance, or ST_DWithin(geom1, geom2, radius) to return a true/false result within a tolerance.

SELECT ST_Distance(
  'LINESTRING (150 300, 226 274, 320 280, 370 320, 390 370)'::geometry,
  'LINESTRING (140 180, 250 230, 350 200, 390 240, 450 200)'::geometry
);

It all looks very simple, but under the covers there is a lot of machinery around getting a result fast for different kinds of inputs.

Distance Under the Covers

Distance should be easy! After all, we learn how to calculate distance in middle school! The Pythagorean Theorem tells us that the square of the hypotenuse of a right triangle is the sum of the squares of the two other sides.

Pythagoras Proof by Rearrangement

So, problem solved, right?

Not so fast. Pythagorus gives us the distance between two points, but objects in spatial databases like PostGIS can be much more complex.

Complex Polygons

How would I calculate the distance between two complex polygons?

Brute Force

The straight-forward solution is to just find the distance between every possible combination of edges in the two polygons, and return the minimum of that set.

Brute force distance

This is a "quadratic" algorithm, what computer scientists call O(n^2), because the amount of work it generates is proportional to the square of the number of inputs. As the inputs get big, the amount of work gets very very very big.

Fortunately, there are better ways.

Projection and Pruning

The distance implementation in PostGIS has two major code paths:

  • For disjoint (non-overlapping) inputs, an optimized calculation; and,
  • For overlapping inputs, the brute force calculation.

Disjoint inputs are handled with a clever simplification of the problem space. Because the inputs are disjoint, it is possible to construct a line between the centers of the two inputs.

Sorted and pruned distance

If every edge in each object is projected down onto the line, it becomes possible to perform a sort of those edges, such that edges that are near on the line are also near in the sorted lists, and near in space.

Starting from the mid-point of each object it is relatively inexpensive to quickly prune away large numbers of edges that are definitely not the nearest edges, leaving a much smaller number of potential targets that need to have their distance calculated.

The cost of creating the projected segments is just O(n), but the cost of the sort step is O(n*log(n)) so the overall cost of the algorithm is O(n*log(n)).

This is all well and good, but what if the inputs do overlap? Then the algorithm falls back to brute-force and O(n^2). Is there any way to avoid that?

Linear Time Spatial Trees

The project-and-prune approach is very clever, but it is possible to generate a spatially searchable representation of the edges even faster, by using the fact that edges in a LineString or LinearRing are highly spatial autocorrelated:

  • The end point of one edge is always the start point of the next.
  • The edges mostly don't cross each other.

Basically, the edges are already spatially pre-sorted. That means it is possible to build a decent tree structure from them incurring any non-linear computational cost.

Linear ring tree

Start with the edges in sorted order. The bounds of the edges form the leaf nodes of a spatial tree. Merge neighboring leaf nodes, now you have the first level of interior nodes. Continue until you have only one node left, that is your root node. The cost is O(n) + O(0.5n) + O(0.25n) ... which is to say in aggregate, O(n).

Ordinarily, building a spatial tree would be expected to cost about O(n*log(n)), so this is a nice win.

The CIRC_NODE tree used to accelerate distance calculation for the geography type is built using this process.

Overlapping Inputs and Distance Calculation

There is no guarantee that a tree-indexed approach will crack the overlapping polygon problem.

Disjoint polygons are very amenable to distance searching trees, because it is easy to discard whole branches of the tree that are definitionally too far away to contain candidate edges.

Pruning disjoint objects

As inputs begin to overlap, it becomes harder to discard large portions of the trees, and as a result a lot of computation is spent traversing the tree, even if a moderate proportion of candidates can be discarded from the lower branches of the tree.

Pruning disjoint objects

Next Steps

The distance calculation in PostGIS has not been touched in many years, for good reason: it's really important, so any re-write has to be definitely an improvement on the existing code, over all known (and unknown) use cases.

However, there is some already built and tested code, in the code base, which has never been turned on, the RECT_TREE.

Like the CIRC_NODE tree in geography, this implementation is based on building a tree from spatially coherent inputs. Unlike the CIRC_NODE tree, it has not been proven to be faster than the existing implementation in all cases.

A next development step will be to revive this implementation, evaluate it for implementation efficiency, and test effectiveness:

  • Can it exceed the current sort-and-prune strategy for disjoint polygons?
  • Can it exceed brute-force for overlapping polygons?

by Paul Ramsey (Paul.Ramsey@crunchydata.com) at March 19, 2024 01:00 PM

March 06, 2024

Crunchy Data

Connecting QGIS to Postgres and PostGIS

QGIS, the Quantum Geographic Information System, is an open-source graphical user interface for map making. QGIS works with a wide variety of file types and has robust support for integrating with Postgres and PostGIS. Today I just wanted to step through getting QGIS connected to a Postgres database and the basic operations that let you connect the two systems.

Connecting QGIS to Postgres

Connecting QGIS to Postgres is very similar to any other GUI or application, you’ll need the database host, login, and password details. This is the same process for a local connection or remote one (like Crunchy Bridge). You’ll connect the first time through the Browser option listed PostgreSQL and Add New Connection.

connect qgis to a postgres

By default, QGIS will store your passwords as plain text in a file. If you’re just working with a local database and don’t have anything special in there, that may not be a problem. But if you’re working with a larger production database shared by lots of users, you’ll want to opt for a higher level of protection for the password. In your PostgreSQL connections box, you’ll see a way to add Configurations for the password. Here you can create a master password, store your database credentials, and they’ll be encrypted and only decrypted with your master password.

Using QGIS to load data

QGIS is a great way to get spatial data into Postgres and PostGIS. You can use any file type supported by QGIS including vector types like shapefiles (shp), GeoJSON, and even csv files on your local machine. To load data into QGIS, you’ll first go to Layer —> Add Layer and choose the type of file you have.

new vector layer qgis

For this sample I have a county map of the state of Kansas. Maps like this are often freely available for download from government agencies.

Once my layer is in, I can toggle on to show labels which will add any label data for your geometry.

qgis layer with labels

Now that I have data in QGIS I can save this to a Postgres database. This will allow me to work with this data later. Go to the DB manager icon, and choose Import Layer.

qgis db manager

There are several settings here, like choosing the primary key, the origin and destination SRID. QGIS will even suggest that adding an index for your geometry column is a good idea and will build an index in your database for you.

Loading data from PostGIS into QGIS

QGIS works both ways, so if you already have a dataset to work from, you can just use that data as your source. In that case, you’ll start from the Layer — Add Layer option. You’ll either need to specify the database connection you want, or add a new one here. You’ll be able to open all the tables in your database and choose which ones to add as a layer in your map viewer.

qgis db import errors

There's a good overview of PostGIS file loading on our blog.

File loading troubleshooting

Depending on the file you get, QGIS may or may not be super happy with it. You might see a warning icon next to your file. The main issues that QGIS will be warning you about are:

  • There’s no spatial reference id

    The spatial reference ID is an important quirk when dealing with geospatial data. You can default to 4326 if you don’t have a better option.

    To find a spatial reference id, or see if it is set:

    SELECT ST_SRID(geom) FROM my_table_name LIMIT 1;
    

    And to update it:

    SELECT UpdateGeometrySRID('my_table_name','geom',4326);
    
  • There’s no geometry column

    Assuming you have points, lines, or polygon data and it is just in the wrong data type, you can create a new column for the geometry and point your data to that new column.

    ALTER TABLE my_table_name
    ADD COLUMN geom geometry(Point, 4326);
    
    UPDATE my_table_name
    SET geom = ST_SetSRID(ST_MakePoint(my_column, my_column), 4326);
    
  • There’s no primary key

    Relational databases rely on a primary key to tie other data together. If there’s already an id column, you can just create a primary key index on it like this. If there’s not a unique column like that, you might have to do a bit more work on the data to get this fixed.

    alter table my_table add primary key (id_column);
    

Writing and Saving SQL

One really cool feature of QGIS is that you can write SQL directly against your Postgres database and view the results as spatial geometries. You can save queries for use later as well. You can also use QGIS to create a layer based on your query results.

Here’s a sample query where I’m joining two data sources, one my geometry of Kansas counties that I loaded earlier. Second population data by county. I’m selecting just the geometry column and with the load option can have QGIS add that query result as a layer.

qgis sql query

QGIS will also let you save a query as “view”. This is a database specific term that will save your query results as a table for use later. This can also be loaded as a layer in QGIS projects. There’s an overview of using views in the post Postgres Subquery Powertools. Views are a great idea if you’re using only a small subset of data in your QGIS map but you are storing a larger dataset as well.

Here’s an example of a map I made using 4 different query layers, one for each different population density.

sql map layers qgis

Don’t forget that QGIS works in stacked layers, so your new SQL query layers will have to be on top of your base map or they won’t be visible.

Saving QGIS projects in Postgres

You can also save your QGIS project in your Postgres database. This is under the Project — Save to options. This can be a good idea if you want others on your team to have access to projects or if you don’t want your QGIS projects stored locally.

qgis saved projects

Final notes

There’s a great video of this and more from PostGIS Day 2020 called QGIS and PostGIS.

  • You can use QGIS to load shape files and other file types into Postgres
  • You can use QGIS to create maps from existing Postgres/PostGIS data sources
  • You can write queries in QGIS against your Postgres data and show the results as geometry layers
  • You can write join queries in QGIS and join your geometry fields with other attribute data or tables in your database
  • You can save all of your project work for QGIS in the Postgres database

by Elizabeth Christensen (Elizabeth.Christensen@crunchydata.com) at March 06, 2024 01:00 PM

February 13, 2024

Crunchy Data

PostGIS Clustering with K-Means

Crunchy Bridge for Analytics
Interested in Spatial analytics? You can now connect Postgres and PostGIS to CSV, JSON, Parquet / GeoParquet, Iceberg, and more with Crunchy Bridge for Analytics.

Clustering points is a common task for geospatial data analysis, and PostGIS provides several functions for clustering.

We previously looked at the popular DBSCAN spatial clustering algorithm, that builds clusters off of spatial density.

This post explores the features of the PostGIS ST_ClusterKMeans function. K-means clustering is having a moment, as a popular way of grouping very high-dimensional LLM embeddings, but it is also useful in lower dimensions for spatial clustering.

ST_ClusterKMeans will cluster 2-dimensional and 3-dimensional data, and will also perform weighted clustering on points when weights are provided in the "measure" dimension of the points.

Some Points to Cluster

To try out K-Means clustering we need some points to cluster, in this case the 1:10M populated places from Natural Earth.

Download the GIS files and load up to your database, in this example using ogr2ogr.

ogr2ogr \
  -f PostgreSQL \
  -nln popplaces \
  -lco GEOMETRY_NAME=geom \
  PG:'dbname=postgres' \
  ne_10m_populated_places_simple.shp

Points

Planar Cluster

A simple clustering in 2D space looks like this, using 10 as the number of clusters:

CREATE TABLE popplaces_geographic AS
SELECT geom, pop_max, name,
  ST_ClusterKMeans(geom, 10) OVER () AS cluster
FROM popplaces;

Clustered Points

Note that pieces of Russia are clustered with Alaska, and Oceania is split up. This is because we are treating the longitude/latitude coordinates of the points as if they were on a plane, so Alaska is very far away from Siberia.

For data confined to a small area, effects like the split at the dateline do not matter, but for our global example, it does. Fortunately there is a way to work around it.

Geocentric Cluster

We can convert the longitude/latitude coordinates of the original data to a geocentric coordinate system using ST_Transform. A "geocentric" system is one in which the origin is the center of the Earth, and positions are defined by their X, Y and Z distances from that center.

Geocentric

In a geocentric system, positions on either side of the dateline are still very close together in space, so it's great for clustering global data without worrying about the effects of the poles or date line. For this example we will use EPSG:4978 as our geocentric system.

Here are the coordinates of New York, converted to geocentric.

SELECT ST_AsText(ST_Transform(ST_PointZ(74.0060, 40.7128, 0, 4326), 4978), 1);
POINT Z (1333998.5 4654044.8 4138300.2)

And here is the cluster operation performed in geocentric space.

CREATE TABLE popplaces_geocentric AS
SELECT geom, pop_max, name,
  ST_ClusterKMeans(
    ST_Transform(
      ST_Force3D(geom),
      4978),
    10) OVER () AS cluster
FROM popplaces;

The results look very similar to the planar clustering, but you can see the "whole world" effect in a few places, like how Australia and all the islands of Oceania are now in one cluster, and how the dividing point between the Siberia and Alaska clusters has moved west across the date line.

Clustered Points

It's worth noting that this clustering has been performed in three dimensions (since geocentric coordinates require an X, Y and Z), even though we are displaying the results in two dimensions.

Weighted Cluster

In addition to naïve k-means, ST_ClusterKMeans can carry out weighted k-means clustering, to push the cluster locations around using extra information in the "M" dimension (the fourth coordinate) of the input points.

Since we have a "populated places" data set, it makes sense to use population as a weight for this example. The weighted algorithm requires strictly positive weights, so we filter out the handful of records that are non-positive.

CREATE TABLE popplaces_geocentric_weighted AS
SELECT geom, pop_max, name,
  ST_ClusterKMeans(
    ST_Force4D(
      ST_Transform(ST_Force3D(geom), 4978),
      mvalue => pop_max
    ),
    10) OVER () AS cluster
FROM popplaces
WHERE pop_max > 0;

Clustered Points

Again, the differences are subtle, but note how India is now a single cluster, how the Brazil cluster is now biased towards the populous eastern coast, and how North America is now split into east and west.

by Paul Ramsey (Paul.Ramsey@crunchydata.com) at February 13, 2024 01:00 PM

February 08, 2024

PostGIS Development

PostGIS Patch Releases

The PostGIS development team is pleased to provide bug fix releases for 3.4.2, 3.3.6, 3.2.7, 3.1.11, 3.0.11, and 2.5.11. Please refer to the links above for more information about the issues resolved by these releases.

by Paul Ramsey at February 08, 2024 12:00 AM

February 06, 2024

Paul Ramsey

Building the PgConf.Dev Programme

Update: The programme is now public.

The programme for pgconf.dev in Vancouver (May 28-31) has been selected, the speakers have been notified, and the whole thing should be posted on the web site relatively soon.

Vancouver, Canada

I have been on programme committees a number of times, but for regional and international FOSS4G events, never for a PostgreSQL event, and the parameters were notably different.

The parameter that was most important for selecting a programme this year was the over 180 submissions, versus the 33 available speaking slots. For FOSS4G conferences, it has been normal to have between two- and three-times as many submissions as slots. To have almost six-times as many made the process very difficult indeed.

Why only 33 speaking slots? Well, that’s a result of two things:

  • Assuming no more than modest growth over the last iteration of PgCon, puts attendence at around 200, which is the size of our plenary room. 200 attendees implies no more than 3 tracks of content.
  • Historically, PostgreSQL events use talks of about 50 minutes in length, within a one hour slot. Over three tracks and two days, that gives us around 33 talks (with slight variations depending on how much time is in plenary, keynotes or lightning talks).

The content of those 33 talks falls out from being the successor to PgCon. PgCon has historically been the event attended by all major contributors. There is an invitation-only contributors round-table on the pre-event day, specifically for the valuable face-to-face synch-up.

Seminary Room

Given only 33 slots, and a unique audience that contains so many contributors, the question of what pgconf.dev should “be” ends up focussed around making the best use of that audience. pgconf.dev should be a place where users, developers, and community organizers come together to focus on Postgres development and community growth.

That’s why in addition to talks about future development directions there are talks about PostgreSQL coding concepts, and patch review, and extensions. High throughput memory algorithms are good, but so is the best way to write a technical blog entry.

Getting from 180+ submissions to 33 selections (plus some stand-by talks in case of cancellations) was a process that consumed three calls of over 2 hours each and several hours of reading every submitted abstract.

The process was shepherded by the inimitable Jonathan Katz.

  • A first phase of just coding talks as either “acceptable” or “not relevant”. Any talks that all the committee members agreed was “not relevant” were dropped from contention.
  • A second phase where each member picked 40 talks from the remaining set into a kind of “personal program”. The talks with just one program member selecting them were then reviewed one at a time, and that member would make the case for them being retained, or let them drop.
  • A winnow looking for duplicate topic talks and selecting the strongest, or encouraging speakers to collaborate.
  • A third “personal program” phase, but this time narrowing the list to 33 talks each.
  • A winnow of the most highly ranked talks, to make sure they really fit the goal of the programme and weren’t just a topic we all happened to find “cool”.
  • A talk by talk review of all the remaining talks, ensuring we were comfortable with all choices, and with the aggregate make up of the programme.

The programme committee was great to work with, willing to speak up about their opinions, disagree amicably, and come to a consensus.

SFU

Since we had to leave 150 talks behind, there’s no doubt lots of speakers who are sad they weren’t selected, and there’s lots of talks that we would have taken if we had more slots.

If you read all the way to here, you must be serious about coming, so you need to register and book your hotel right away. Spaces are, really, no kidding, very limited.

February 06, 2024 04:00 PM

January 30, 2024

Crunchy Data

JSON and SVG from PostGIS into Google Sheets

At PostGIS Day 2023, one of our speakers showed off a really cool demo for getting JSON and SVGs in and out of Postgres / PostGIS and into Google Sheets. Brian Timoney put together several open source projects in such a cool way that I just had to try it myself. If you want to see his demo video, it is on YouTube. With Brian’s blessing, I’m writing up some additional details with a few of the sample code bits for those of you that want to try this or something similar for your own projects.

So what do we have here? We have Postgres data that is coming into Google sheets in real time, tied to a custom SVG.

hockey spreadsheet.png

Before we dive in, an overview of things that I’ll cover to make this happen :

  • Running pg_featureserv from inside a database
  • Serving JSON data from Postgres with pg_featureserv
  • Functions to create SVG imasges
  • Serving SVG images from Postgres with pg_featureserv
  • JSON & SVGs delivered to Google Sheets

postgis svg google sheet overview image

pg_svg functions

Brian wrote some special stuff for the goal and shot data in his examples to get it just right so if you want to play with a sample of that, here’s some data for you.

Sample data
-- Regular season goals of Colorado Avalanche for 2021-2022 season
--

-- information derived from public NHL API
-- shot locations normalized for offensive end of ice
-- hex_id was derived for a demo for the 2022 PostGIS Day demo

SET client_encoding = 'UTF8';

CREATE TABLE public.goals (
    rec_num integer,
    game_id text,
    this_event text,
    this_event_code text,
    players text,
    playerid text,
    player_role text,
    x_coord text,
    y_coord text,
    team_scored text,
    period_num text,
    period_type text,
    plot_x numeric,
    plot_y numeric,
    plot_pt public.geometry(Point,32613),
    hex_id numeric
);

ALTER TABLE public.goals OWNER TO postgres;

INSERT INTO public.goals VALUES (26, '2021020005', 'Goal', 'COL24', 'Jack Johnson', '8471677', 'Scorer', '-77.0', '1.0', 'Colorado Avalanche', '1', 'REGULAR', 77.0, -1.0, '01010000000000000000405340000000000000F0BF', 258);
INSERT INTO public.goals VALUES (5997, '2021020982', 'Goal', 'SJS204', 'Darren Helm', '8471794', 'Scorer', '-76.0', '5.0', 'Colorado Avalanche', '1', 'REGULAR', 76.0, -5.0, '0101000000000000000000534000000000000014C0', 257);
INSERT INTO public.goals VALUES (2432, '2021020415', 'Goal', 'COL45', 'Darren Helm', '8471794', 'Scorer', '-75.0', '-3.0', 'Colorado Avalanche', '1', 'REGULAR', 75.0, 3.0, '01010000000000000000C052400000000000000840', 258);
Sample data for the rink (this is a DXF CAD file encoded as a geometry string)
  -- Rink map created from random DXF file found on internet
  --
  -- ** IMPORTANT: SRID of 32613 is fake!! It is just an arbitrary X/Y plane

SET client_encoding = 'UTF8';

CREATE TABLE public.therink ( id_num integer, geom
public.geometry(MultiLineString,32613) );

ALTER TABLE public.therink OWNER TO postgres;

INSERT INTO public.therink VALUES (1,
'0105000020657F00003501000001020000000200000018C5724B2B13594045920F30A97C3CC018C5724B2B1359400570C4A4097D3C40010200000002000000372861A68D90554083BAEDE7B93D45408C5E46B1BC8F55C083BAEDE7B93D45400102000000020000001DBB2CA22D515640B31ADE9525FE0FC0CD49EF1B1F515640B31ADE9525FE0FC0010200000002000000CD49EF1B1F515640B31ADE9525FE0FC024A62CBF532F5540B31ADE9525FE0FC001020000000200000024A62CBF532F5540EAB17E4ACDFA0F40CD49EF1B1F515640EAB17E4ACDFA0F40010200000003000000CD49EF1B1F515640EAB17E4ACDFA0F401DBB2CA22D515640EAB17E4ACDFA0F401DBB2CA22D515640E528AB7FA50C09400102000000020000001DBB2CA22D515640E528AB7FA50C09401DBB2CA22D515640BD115AA41B5409C00102000000020000001DBB2CA22D515640BD115AA41B5409C01DBB2CA22D515640B31ADE9525FE0FC0010200000002000000DB4104A04A5056C0961ADE9525FE0FC09CE61DA7485056C0961ADE9525FE0FC00102000000020000009CE61DA7485056C0961ADE9525FE0FC0E22C04BD702E55C0961ADE9525FE0FC0010200000002000000E22C04BD702E55C006B27E4ACDFA0F409CE61DA7485056C006B27E4ACDFA0F400102000000030000009CE61DA7485056C006B27E4ACDFA0F40DB4104A04A5056C006B27E4ACDFA0F40DB4104A04A5056C06BE28752570C0940010200000002000000DB4104A04A5056C06BE28752570C0940DB4104A04A5056C0CB53C764D15309C0010200000002000000DB4104A04A5056C0CB53C764D15309C0DB4104A04A5056C0961ADE9525FE0FC001020000000200000057FAD005B5AD51405256783CD23D424057FAD005B5AD514020D96D61A7BD4340010200000002000000E00508EE597D55C00CE7035D56FC0FC0E00508EE597D55C0C0515ED0E7000CC0010200000002000000E00508EE597D55C05DB0A481C4FB0B40E00508EE597D55C0A8454A0E33F70F400102000000020000003797E2AA7273554028E7035D56FC0FC03797E2AA72735540DD515ED0E7000CC001020000000200000018C5724B2B1359400570C4A4097D3C4009A9C0BAF9115940005B6E8783413D4001020000000200000009A9C0BAF9115940005B6E8783413D400A45BCDB6D0E5940A5FCC69496023E400102000000020000000A45BCDB6D0E5940A5FCC69496023E40648100EB940859401AC2D1070EC03E40010200000002000000648100EB940859401AC2D1070EC03E405C4628257C0059408A18921BB5793F400102000000020000005C4628257C0059408A18921BB5793F40397CCEC630F6584094B68585AB174040010200000002000000397CCEC630F6584094B68585AB174040420B8E0CC0E958408F96A0885F704040010200000002000000420B8E0CC0E958408F96A0885F704040BEDB013337DB5840C6629B34DCC64040010200000002000000BEDB013337DB5840C6629B34DCC64040F3D5C476A3CA5840CFD1F726071B4140010200000002000000F3D5C476A3CA5840CFD1F726071B414028E2711412B858403C9A37FDC56C414001020000000200000028E2711412B858403C9A37FDC56C4140A4E8A34890A35840AF72DC54FEBB4140010200000002000000A4E8A34890A35840AF72DC54FEBB4140AFD1F54F2B8D5840B01168CB95084240010200000002000000AFD1F54F2B8D5840B01168CB950842408D850267F0745840DC2D5CFE715242400102000000020000008D850267F0745840DC2D5CFE7152424087EC64CAEC5A5840C27D3A8B7899424001020000000200000087EC64CAEC5A5840C27D3A8B78994240E2EEB7B62D3F5840FDB7840F8FDD4240010200000002000000E2EEB7B62D3F5840FDB7840F8FDD4240E6749668C02158401A93BC289B1E4340010200000002000000E6749668C02158401A93BC289B1E4340D9669B1CB2025840B5C56374825C4340010200000002000000D9669B1CB2025840B5C56374825C434003AD610F10E257405F06FC8F2A97434001020000000200000003AD610F10E257405F06FC8F2A974340A82F847DE7BF5740B00B071979CE4340010200000002000000A82F847DE7BF5740B00B071979CE434012D79DA3459C5740398C06AD5302444001020000000200000012D79DA3459C5740398C06AD53024440878B49BE37775740953E7CE99F324440010200000002000000878B49BE37775740953E7CE99F3244404D35220ACB50574057D9E96B435F44400102000000020000004D35220ACB50574057D9E96B435F4440A8BCC2C30C2957400D13D1D123884440010200000002000000A8BCC2C30C2957400D13D1D123884440E509C6270A00574055A2B3B826AD4440010200000002000000E509C6270A00574055A2B3B826AD44404605C772D0D55640C13D13BE31CE44400102000000020000004605C772D0D55640C13D13BE31CE4440139760E16CAA5640E59B717F2AEB4440010200000002000000139760E16CAA5640E59B717F2AEB444093A72DB0EC7D56405773509AF603454001020000000200000093A72DB0EC7D56405773509AF6034540CD49EF1B1F51564008ED564C24184540010200000002000000CD49EF1B1F51564008ED564C241845400D1FC91B5D505640AD7A31AC7B1845400102000000020000000D1FC91B5D505640AD7A31AC7B184540C6E5CD60CB2156407A6896529F284540010200000002000000C6E5CD60CB2156407A6896529F28454008E4D6BB44F2554053F3002B4734454001020000000200000008E4D6BB44F2554053F3002B4734454015027F69D6C15540D0D1F2D2583B454001020000000200000015027F69D6C15540D0D1F2D2583B4540372861A68D90554083BAEDE7B93D45400102000000020000008C5E46B1BC8F55C083BAEDE7B93D45406B38647405C155C0D0D1F2D2583B45400102000000020000006B38647405C155C0D0D1F2D2583B45405D1ABCC673F155C057F3002B473445400102000000020000005D1ABCC673F155C057F3002B47344540191CB36BFA2056C07D6896529F284540010200000002000000191CB36BFA2056C07D6896529F2845406055AE268C4F56C0B17A31AC7B1845400102000000020000006055AE268C4F56C0B17A31AC7B1845409CE61DA7485056C06A4459C6261845400102000000020000009CE61DA7485056C06A4459C626184540E5DD12BB1B7D56C05773509AF6034540010200000002000000E5DD12BB1B7D56C05773509AF603454067CD45EC9BA956C0E99B717F2AEB444001020000000200000067CD45EC9BA956C0E99B717F2AEB44409A3BAC7DFFD456C0C13D13BE31CE44400102000000020000009A3BAC7DFFD456C0C13D13BE31CE44403640AB3239FF56C055A2B3B826AD44400102000000020000003640AB3239FF56C055A2B3B826AD4440FCF2A7CE3B2857C00D13D1D123884440010200000002000000FCF2A7CE3B2857C00D13D1D1238844409B6B0715FA4F57C053D9E96B435F44400102000000020000009B6B0715FA4F57C053D9E96B435F4440DAC12EC9667657C0993E7CE99F324440010200000002000000DAC12EC9667657C0993E7CE99F324440650D83AE749B57C03D8C06AD53024440010200000002000000650D83AE749B57C03D8C06AD53024440FB65698816BF57C0B00B071979CE4340010200000002000000FB65698816BF57C0B00B071979CE434054E3461A3FE157C05F06FC8F2A97434001020000000200000054E3461A3FE157C05F06FC8F2A9743402C9D8027E10158C0B8C56374825C43400102000000020000002C9D8027E10158C0B8C56374825C434038AB7B73EF2058C01E93BC289B1E434001020000000200000038AB7B73EF2058C01E93BC289B1E434035259DC15C3E58C0FDB7840F8FDD424001020000000200000035259DC15C3E58C0FDB7840F8FDD4240DA224AD51B5A58C0C67D3A8B78994240010200000002000000DA224AD51B5A58C0C67D3A8B78994240E2BBE7711F7458C0E02D5CFE71524240010200000002000000E2BBE7711F7458C0E02D5CFE715242400208DB5A5A8C58C0B41168CB950842400102000000020000000208DB5A5A8C58C0B41168CB95084240FA1E8953BFA258C0B372DC54FEBB4140010200000002000000FA1E8953BFA258C0B372DC54FEBB41407E18571F41B758C0439A37FDC56C41400102000000020000007E18571F41B758C0439A37FDC56C4140460CAA81D2C958C0D2D1F726071B4140010200000002000000460CAA81D2C958C0D2D1F726071B41401412E73D66DA58C0C6629B34DCC640400102000000020000001412E73D66DA58C0C6629B34DCC6404096417317EFE858C08F96A0885F70404001020000000200000096417317EFE858C08F96A0885F7040408BB2B3D15FF558C097B68585AB1740400102000000020000008BB2B3D15FF558C097B68585AB174040B27C0D30ABFF58C09118921BB5793F40010200000002000000B27C0D30ABFF58C09118921BB5793F40B8B7E5F5C30759C01EC2D1070EC03E40010200000002000000B8B7E5F5C30759C01EC2D1070EC03E405C7BA1E69C0D59C0A9FCC69496023E400102000000020000005C7BA1E69C0D59C0A9FCC69496023E405CDFA5C5281159C0045B6E8783413D400102000000020000005CDFA5C5281159C0045B6E8783413D406CFB57565A1259C00970C4A4097D3C400102000000020000006CFB57565A1259C041920F30A97C3CC060DFA5C5281159C0377DB91223413DC001020000000200000060DFA5C5281159C0377DB91223413DC0617BA1E69C0D59C0DA1E122036023EC0010200000002000000617BA1E69C0D59C0DA1E122036023EC0B8B7E5F5C30759C051E41C93ADBF3EC0010200000002000000B8B7E5F5C30759C051E41C93ADBF3EC0B27C0D30ABFF58C0C63ADDA654793FC0010200000002000000B27C0D30ABFF58C0C63ADDA654793FC08BB2B3D15FF558C0B3472B4B7B1740C00102000000020000008BB2B3D15FF558C0B3472B4B7B1740C099417317EFE858C0AA27464E2F7040C001020000000200000099417317EFE858C0AA27464E2F7040C01212E73D66DA58C0E2F340FAABC640C00102000000020000001212E73D66DA58C0E2F340FAABC640C0460CAA81D2C958C0ED629DECD61A41C0010200000002000000460CAA81D2C958C0ED629DECD61A41C07C18571F41B758C05F2BDDC2956C41C00102000000020000007C18571F41B758C05F2BDDC2956C41C0F61E8953BFA258C0D003821ACEBB41C0010200000002000000F61E8953BFA258C0D003821ACEBB41C00208DB5A5A8C58C0D1A20D91650842C00102000000020000000208DB5A5A8C58C0D1A20D91650842C0E2BBE7711F7458C0FABE01C4415242C0010200000002000000E2BBE7711F7458C0FABE01C4415242C0DA224AD51B5A58C0E00EE050489942C0010200000002000000DA224AD51B5A58C0E00EE050489942C035259DC15C3E58C019492AD55EDD42C001020000000200000035259DC15C3E58C019492AD55EDD42C039AB7B73EF2058C0362462EE6A1E43C001020000000200000039AB7B73EF2058C0362462EE6A1E43C02C9D8027E10158C0D156093A525C43C00102000000020000002C9D8027E10158C0D156093A525C43C056E3461A3FE157C07C97A155FA9643C001020000000200000056E3461A3FE157C07C97A155FA9643C0FF65698816BF57C0CC9CACDE48CE43C0010200000002000000FF65698816BF57C0CC9CACDE48CE43C0650D83AE749B57C0571DAC72230244C0010200000002000000650D83AE749B57C0571DAC72230244C0D8C12EC9667657C0B2CF21AF6F3244C0010200000002000000D8C12EC9667657C0B2CF21AF6F3244C0A26B0715FA4F57C0716A8F31135F44C0010200000002000000A26B0715FA4F57C0716A8F31135F44C0FEF2A7CE3B2857C02BA47697F38744C0010200000002000000FEF2A7CE3B2857C02BA47697F38744C03A40AB3239FF56C07333597EF6AC44C00102000000020000003A40AB3239FF56C07333597EF6AC44C09B3BAC7DFFD456C0DECEB88301CE44C00102000000020000009B3BAC7DFFD456C0DECEB88301CE44C067CD45EC9BA956C0032D1745FAEA44C001020000000200000067CD45EC9BA956C0032D1745FAEA44C0E7DD12BB1B7D56C07504F65FC60345C0010200000002000000E7DD12BB1B7D56C07504F65FC60345C09CE61DA7485056C083D5FE8BF61745C00102000000020000009CE61DA7485056C083D5FE8BF61745C06055AE268C4F56C0CA0BD7714B1845C00102000000020000006055AE268C4F56C0CA0BD7714B1845C01B1CB36BFA2056C098F93B186F2845C00102000000020000001B1CB36BFA2056C098F93B186F2845C05B1ABCC673F155C07284A6F0163445C00102000000020000005B1ABCC673F155C07284A6F0163445C06938647405C155C0EE629898283B45C00102000000020000006938647405C155C0EE629898283B45C08C5E46B1BC8F55C0A14B93AD893D45C00102000000020000006CFB57565A1259C00970C4A4097D3C406CFB57565A1259C041920F30A97C3CC0010200000002000000372861A68D905540A34B93AD893D45C014027F69D6C15540EF629898283B45C001020000000200000014027F69D6C15540EF629898283B45C006E4D6BB44F255407384A6F0163445C001020000000200000006E4D6BB44F255407384A6F0163445C0C6E5CD60CB2156409AF93B186F2845C0010200000002000000C6E5CD60CB2156409AF93B186F2845C00B1FC91B5D505640CC0BD7714B1845C00102000000020000000B1FC91B5D505640CC0BD7714B1845C0CD49EF1B1F515640277EFC11F41745C0010200000002000000CD49EF1B1F515640277EFC11F41745C091A72DB0EC7D56407704F65FC60345C001020000000200000091A72DB0EC7D56407704F65FC60345C0119760E16CAA5640052D1745FAEA44C0010200000002000000119760E16CAA5640052D1745FAEA44C04405C772D0D55640E1CEB88301CE44C00102000000020000004405C772D0D55640E1CEB88301CE44C0E509C6270A0057407433597EF6AC44C0010200000002000000E509C6270A0057407433597EF6AC44C0A8BCC2C30C2957402DA47697F38744C0010200000002000000A8BCC2C30C2957402DA47697F38744C04B35220ACB505740756A8F31135F44C00102000000020000004B35220ACB505740756A8F31135F44C0878B49BE37775740B5CF21AF6F3244C0010200000002000000878B49BE37775740B5CF21AF6F3244C012D79DA3459C57405B1DAC72230244C001020000000200000012D79DA3459C57405B1DAC72230244C0A82F847DE7BF5740CF9CACDE48CE43C0010200000002000000A82F847DE7BF5740CF9CACDE48CE43C001AD610F10E257407F97A155FA9643C001020000000200000001AD610F10E257407F97A155FA9643C0D9669B1CB2025840D456093A525C43C0010200000002000000D9669B1CB2025840D456093A525C43C0E4749668C02158403A2462EE6A1E43C0010200000002000000E4749668C02158403A2462EE6A1E43C0E0EEB7B62D3F58401B492AD55EDD42C0010200000002000000E0EEB7B62D3F58401B492AD55EDD42C085EC64CAEC5A5840E40EE050489942C001020000000200000085EC64CAEC5A5840E40EE050489942C08D850267F0745840FEBE01C4415242C00102000000020000008D850267F0745840FEBE01C4415242C0AFD1F54F2B8D5840D4A20D91650842C0010200000002000000AFD1F54F2B8D5840D4A20D91650842C0A4E8A34890A35840D103821ACEBB41C0010200000002000000A4E8A34890A35840D103821ACEBB41C028E2711412B85840612BDDC2956C41C001020000000200000028E2711412B85840612BDDC2956C41C0F3D5C476A3CA5840EE629DECD61A41C0010200000002000000F3D5C476A3CA5840EE629DECD61A41C0BEDB013337DB5840E5F340FAABC640C0010200000002000000BEDB013337DB5840E5F340FAABC640C0420B8E0CC0E95840AF27464E2F7040C0010200000002000000420B8E0CC0E95840AF27464E2F7040C0397CCEC630F65840B6472B4B7B1740C0010200000002000000397CCEC630F65840B6472B4B7B1740C05C4628257C005940CD3ADDA654793FC00102000000020000005C4628257C005940CD3ADDA654793FC0648100EB940859405AE41C93ADBF3EC0010200000002000000648100EB940859405AE41C93ADBF3EC00A45BCDB6D0E5940E31E122036023EC00102000000020000000A45BCDB6D0E5940E31E122036023EC009A9C0BAF9115940417DB91223413DC001020000000200000009A9C0BAF9115940417DB91223413DC018C5724B2B13594045920F30A97C3CC00102000000020000008C5E46B1BC8F55C0A14B93AD893D45C01708294FCB1039C0A24B93AD893D45C00102000000020000001708294FCB1039C0A24B93AD893D45C0B8735DA930FF553FA24B93AD893D45C0010200000002000000B8735DA930FF553FA24B93AD893D45C03FB97F5583143940A24B93AD893D45C00102000000020000003FB97F5583143940A24B93AD893D45C0372861A68D905540A34B93AD893D45C00102000000020000000FB808FEB792B8BF69C28AAE66F02C403F2F19F73F81733F3B6032CA0EEF2C400102000000200000003F2F19F73F81733F3B6032CA0EEF2C403A673B1A78A8E53FC35881DF18E62C405649D723CC06F73F5238BD4887C72C405F0F1B7B31850140198CC2AB35952C40AF0E125B6F6D0740077F15CAA74F2C407997C5CA0E3A0D400A3C3A6561F72B40EA4E95717F74114011EEB43EE68C2B40A70B9B5E173C144009C00918BA102B400D7CEEB8C6F21640F0DCBCB260832A408C1A0A0D859719409E6F52D05DE52940686168E749291C401EA34E3235372940F5CA83D40CA71E4050A2359A6A792840D2686BB0E28720402A988BC981AC2740E3F76D8C35B12140A1AFD481FED02640DFCF86C4FACE22409513958464E72540F02DF31EAEE023400AEF509337F02440464FF061CBE52440D96C8C6FFBEB23400471BB53CEDD25400DB8CBDA33DB224062D091BA32C8264086FB929664BE21407BAAB05C74A427402B62666411962040953C55000F722840FE2D940B7CC51E40CCC3BC6B7E302940E4898478DC491C40587D24653EDF2940D32DA6924BBA194053A6C9B2CA7D2A40AB6F01DDD0171740FE7BE91A9F0B2B4062A59EDA73631440823BC16337882B40C924860E3C9E114008228E530FF32B40768780F761920D40AB6C8DB0A24B2C4064B0AA4AB4CA0740BA58FC406D912C40DC6F9B1C7EE70140502318CBEAC32C40A0E3C6E69CD5F73F9C091E1597E22C4074874D54D15AE73FC3484BE5EDEC2C40DD1005114EB0A4BF010200000020000000C3484BE5EDEC2C40DD1005114EB0A4BF83B4233797E22C4056F68A829BF0E9BF0A85A54EEBC32C406491ED5E6620F9BF398EC55E6E912C40BF288F03D78C02C0D6A3789AA44B2C401AD1BA3B037008C0CA99B33412F32B4040B5C8B6A8370EC0BF436B603B882B4000E4C329DCF011C0C3759450A40B2B40A47E637811B614C085032438D17D2A40F3A3AAB66C6A17C0F7C00E4A46DF2940C8CD0054E60C1AC0D78149B9873029409A75CDBF769C1CC0FA19C9B8197228402515786916181FC0485D827B80A42740141334E05EBF20C0961F6A3440C826401B91029AB2E721C0AB347516DDDD25407041DB99820423C060709854DBE52440FAE071174B1524C0A1A6C821BFE02340812C7A4A881925C024ABFAB00CCF2240E2E0A76AB61026C0DA51233548B12140E2BAAEAF51FA26C0896E37E1F58720406A774251D6D527C028AA57D033A71E403DD31687C0A228C073B2EAF970291C40338BDF888C6029C0D39D11A5AB9719401F5C508EB60E2AC0E313B637ECF21640DA021DCFBAAC2AC04CBCC1173B3C1440333CF982153A2BC0B63E1EABA0741140FCC498E142B62BC090856AAF4A3A0D40125AAF22BF202CC075E0E006A36D07403AB8F07D06792CC086DD72285B850140579C102B95BE2CC0EF97E7BF0707F73F35C3C261E7F02CC06AECDBE4B7A8E53FA3E9BA59790F2DC03649A0A4F1BC683F167FB05775182DC00102000000020000003649A0A4F1BC683F167FB05775182DC00FB808FEB792B8BF7CCCAC4AC7192DC00102000000200000000FB808FEB792B8BF7CCCAC4AC7192DC0B095BD1926CDEBBFCC62A37B790F2DC0586098232319FABF5E42DFE4E7F02CC0E09AFBFA5C0E03C02D96E44796BE2CC04C9AF2DA9AF608C01B89376608792CC0DD22A64A3AC30EC021465C01C2202CC0D6948531153912C024F8D6DA46B62BC059518B1EAD0015C024CA2BB41A3A2BC0CDC1DE785CB717C007E7DE4EC1AC2AC02F60FACC1A5C1AC0C379746CBE0E2AC0EFA658A7DFED1CC043AD70CE956029C0A7107494A26B1FC06AAC5736CBA228C0A48B63902DEA20C044A2AD65E2D527C0C31A666C801322C0BBB9F61D5FFA26C0B8F27EA4453123C0B31DB720C51026C0D050EBFEF84224C01EF9722F981925C01F72E841164825C0F876AE0B5C1524C0E493B333194026C021C2ED76940423C042F3899A7D2A27C09205B532C5E721C05BCDA83CBF0628C0456C880072BF20C06E5F4DE059D428C03442D8433D181FC0ACE6B44BC99229C00B9EC8B09D9C1CC038A01C4589412AC0FA41EACA0C0D1AC034C9C19215E02AC0E0834515926A17C0DF9EE1FAE96D2BC089B9E21235B614C05B5EB94382EA2BC0F038CA46FDF011C0DA4486335A552CC0E0AF0868E4370EC08C8F8590EDAD2CC0B2D832BB367008C0A27BF420B8F32CC04698238D008D02C0304610AB35262DC03B34D7C7A120F9BF752C16F5E1442DC01D296E16DBF0E9BFA36B43C5384F2DC0BA0905114EB0A4BF010200000020000000A36B43C5384F2DC0BA0905114EB0A4BF79D71B17E2442DC0AD546AC0915AE73F00A89D2E36262DC00241DD7D61D5F73F27B1BD3EB9F32CC07100079354E70140C4C6707AEFAD2CC0CDA832CB80CA07409CBCAB145D552CC0B98C404626920D40AE66634086EA2BC0D9CF7FF11A9E1140A3988C30EF6D2BC06E6A1F40506314406D261C181CE02AC0CC8F667EAB171740D0E3062A91412AC085B9BC1B25BA194094A44199D29229C057618987B5491C40E13CC19864D428C00D01343155C51E4028807A5BCB0628C001091244FE952040764262148B2A27C00087E0FD51BE214084576DF6274026C05D37B9FD21DB224040939034264825C0DFD64F7BEAEB234073C9C0010A4324C06E2258AE27F024400BCEF290573123C0CBD685CE55E72540C1741B15931322C0D6B08C13F1D026406A912FC140EA20C0576D20B575AC2740E9EF4790C96B1FC026C9F4EA5F79284033F8DAB906EE1CC02381BDEC2B372940A2E30165415C1AC00F522EF255E52940B259A6F781B717C0CAF8FA325A832A400D02B2D7D00015C02332D7E6B4102B4076840E6B363912C0ECBA7645E28C2B4011114B2F76C30EC0FB4F8D865EF72B40F66BC186CEF608C02AAECEE1A54F2C40076953A8860E03C04092EE8E34952C40B8AEA8BF5E19FABF17B9A0C586C72C406E1A5EE465CDEBBF8CDF98BD18E62C400FB808FEB792B8BF69C28AAE66F02C40010200000002000000AE471066DAFE553F9D6A8885B53D45C0B8735DA930FF553FA24B93AD893D45C0010200000002000000B8735DA930FF553FA24B93AD893D45C03649A0A4F1BC683F167FB05775182DC00102000000020000003649A0A4F1BC683F167FB05775182DC036E5D8B785A56F3F0EFA6E8D7815E0BF01020000000200000036E5D8B785A56F3F0EFA6E8D7815E0BF37B9CA02EF11703FC5CD8EE01C06E03F01020000000200000037B9CA02EF11703FC5CD8EE01C06E03F3F2F19F73F81733F3B6032CA0EEF2C400102000000020000003F2F19F73F81733F3B6032CA0EEF2C40D7F3151406657A3F899BF80F8E3D45400102000000020000003FB97F5583143940587E1B8DBC3D45C03FB97F5583143940A24B93AD893D45C00102000000020000003FB97F5583143940A24B93AD893D45C043B97F5583143940CB876508873D45400102000000020000001CE1CC33CF4E56C0842E3A42CE3F09C09CE61DA7485056C0744C65C3B65309C00102000000020000009CE61DA7485056C0744C65C3B65309C0DB4104A04A5056C0CB53C764D15309C0010200000020000000DB4104A04A5056C0CB53C764D15309C03360A5A62D5556C0E1B6C94DCD9509C05997D7A5AD5B56C07A47E9AD10E609C081E10B874C6256C0FADF986298300AC0A899EA9F076956C04580D86B64750AC0C01A1C46DC6F56C0AF28A8C974B40AC0C8BF48CFC77656C0E3D8077CC9ED0AC0ACE31891C77D56C05491F78262210BC06CE134E1D88456C0725177DE3F4F0BC0F8134515F98B56C0CD19878E61770BC04BD6F182259356C02CEA2693C7990BC06283E37F5B9A56C037C256EC71B60BC02B76C26198A156C063A2169A60CD0BC09E09377ED9A856C0768A669C93DE0BC0B598E92A1CB056C08C7A46F30AEA0BC0647E82BD5DB756C08872B69EC6EF0BC0A415AA8B9BBE56C08872B69EC6EF0BC06FB908EBD2C556C06F7A46F30AEA0BC0B9C4463101CD56C0768A669C93DE0BC077920CB423D456C047A2169A60CD0BC0A27D02C937DB56C037C256EC71B60BC033E1D0C53AE256C0F2E92693C7990BC0201820002AE956C0CD19878E61770BC05D7D98CD02F056C08F5177DE3F4F0BC0E56BE283C2F656C05491F78262210BC0AD3EA67866FD56C000D9077CC9ED0AC0A9508C01EC0357C0AF28A8C974B40AC0DCFC3C74500A57C04580D86B64750AC02C9E6026911057C0DEDF986298300AC09F8F9F6DAB1657C09747E9AD10E609C0222CA29F9C1C57C01AB7C94DCD9509C0B1CE1012622257C0842E3A42CE3F09C00102000000020000001708294FCB1039C0577E1B8DBC3D45C01708294FCB1039C0A24B93AD893D45C00102000000020000001708294FCB1039C0A24B93AD893D45C01708294FCB1039C0CF876508873D4540010200000020000000B1CE1012622257C02CE1052845F70840084A54910C1E57C0C2699533444D0940E02EB7CB541957C022FAB493879D0940C253D085401457C0859264480FE80940488F3684D50E57C00933A451DB2C0A40FDB7808B190957C03ADB73AFEB6B0A407EA44560120357C0C48BD36140A50A404F2B1CC7C5FC56C01844C368D9D80A4008239B8439F656C0530443C4B6060B403562595D73EF56C075CC5274D82E0B4071BFED1579E856C07D9CF2783E510B404B11EF7250E156C0C27422D2E86D0B40512EF438FFD956C00B55E27FD7840B4013ED932C8BD256C01D3D32820A960B4024246512FACA56C0172D12D981A10B401BAAFEAE51C356C0132582843DA70B408155F7C697BB56C0302582843DA70B40EFFCE51ED2B356C0332D12D981A10B40F276617B06AC56C0013D32820A960B401D9A00A13AA456C00B55E27FD7840B40013D5A54749C56C0DF7422D2E86D0B402E36055AB99456C0B79CF2783E510B403A5C98760F8D56C075CC5274D82E0B40B385AA6E7C8556C0530443C4B6060B402C89D206067E56C01844C368D9D80A40323DA703B27656C0A78BD36140A50A405F78BF29866F56C056DB73AFEB6B0A403D11B23D886856C00933A451DB2C0A4060DE1504BE6156C0A29264480FE809405AB681412D5B56C022FAB493879D0940C06F8CBADB5456C0A5699533444D0940DB4104A04A5056C06BE28752570C0940010200000002000000DB4104A04A5056C06BE28752570C09409CE61DA7485056C094417C483B0C09400102000000020000009CE61DA7485056C094417C483B0C09401CE1CC33CF4E56C02CE1052845F70840010200000002000000B1CE1012622257C0842E3A42CE3F09C0B1CE1012622257C02CE1052845F708400102000000030000003A53E8BC06CD5040367870C163E539403A53E8BC06CD50409A728577B9E536403AB324408D984F409A728577B9E5364001020000000300000048809A5AB6CD5140B08394E9E115324048809A5AB6CD51404C897F338C153540E479707776CE52404C897F338C153540010200000002000000D8C03EB6AC4F5640A12E3A42CE3F09C0CD49EF1B1F515640BFDF0387575309C0010200000002000000CD49EF1B1F515640BFDF0387575309C01DBB2CA22D515640BD115AA41B5409C00102000000200000001DBB2CA22D515640BD115AA41B5409C0EF3F17290B565640FEB6C94DCD9509C0137749288B5C56409747E9AD10E609C03FC17D092A63564017E0986298300AC064795C22E56956406180D86B64750AC07EFA8DC8B9705640CB28A8C974B40AC0839FBA51A577564000D9077CC9ED0AC068C38A13A57E56407191F78262210BC028C1A663B68556408F5177DE3F4F0BC0B5F3B697D68C5640EA19878E61770BC00BB663050394564048EA2693C7990BC01E635502399B564054C256EC71B60BC0E55534E475A2564080A2169A60CD0BC05AE9A800B7A95640928A669C93DE0BC06F785BADF9B05640A87A46F30AEA0BC0205EF43F3BB85640A572B69EC6EF0BC062F51B0E79BF5640A572B69EC6EF0BC02B997A6DB0C656408C7A46F30AEA0BC075A4B8B3DECD5640928A669C93DE0BC033727E3601D5564063A2169A60CD0BC0605D744B15DC564054C256EC71B60BC0EFC0424818E356400FEA2693C7990BC0DBF7918207EA5640EA19878E61770BC0195D0A50E0F05640AC5177DE3F4F0BC0A24B5406A0F756407191F78262210BC0691E18FB43FE56401CD9077CC9ED0AC06930FE83C9045740CB28A8C974B40AC098DCAEF62D0B57406180D86B64750AC0EC7DD2A86E115740FADF986298300AC05B6F11F088175740B447E9AD10E609C0E00B14227A1D574037B7C94DCD9509C06FAE82943F235740A12E3A42CE3F09C00102000000020000001CE1CC33CF4E56C02CE1052845F708401CE1CC33CF4E56C0842E3A42CE3F09C00102000000200000006FAE82943F2357400FE1052845F70840C629C613EA1E5740A5699533444D09409B0E294E321A574005FAB493879D09407E3342081E155740699264480FE80940066FA806B30F5740EC32A451DB2C0A40BD97F20DF70957401DDB73AFEB6B0A403A84B7E2EF035740A78BD36140A50A400B0B8E49A3FD5640FC43C368D9D80A40C4020D0717F75640370443C4B6060B40F541CBDF50F0564058CC5274D82E0B40319F5F9856E95640619CF2783E510B4007F160F52DE25640A67422D2E86D0B400D0E66BBDCDA5640EE54E27FD7840B40CFCC05AF68D35640013D32820A960B40E203D794D7CB5640FA2C12D981A10B40D78970312FC45640F72482843DA70B403F35694975BC5640132582843DA70B40ADDC57A1AFB45640172D12D981A10B40AE56D3FDE3AC5640E43C32820A960B40D979722318A55640EE54E27FD7840B40BD1CCCD6519D5640C27422D2E86D0B40EC1577DC969556409A9CF2783E510B40F63B0AF9EC8D564058CC5274D82E0B406F651CF159865640370443C4B6060B40E8684489E37E5640FC43C368D9D80A40F01C19868F7756408B8BD36140A50A401B5831AC637056403ADB73AFEB6B0A40F9F023C065695640EC32A451DB2C0A401EBE87869B625640859264480FE809401996F3C30A5C564005FAB493879D09407C4FFE3CB955564089699533444D09401DBB2CA22D515640E528AB7FA50C09400102000000020000001DBB2CA22D515640E528AB7FA50C0940CD49EF1B1F51564024F64C02D70B0940010200000002000000CD49EF1B1F51564024F64C02D70B0940D8C03EB6AC4F56400FE1052845F708400102000000020000006FAE82943F235740A12E3A42CE3F09C06FAE82943F2357400FE1052845F70840010200000002000000D8C03EB6AC4F56400FE1052845F70840D8C03EB6AC4F5640A12E3A42CE3F09C001020000002000000024A62CBF532F5540B31ADE9525FE0FC04AE5923D092F55406CE9B46790F40FC0F7729245302E5540255DCADDF5D70FC092875EAAD22C5540CC00F8788DA80FC0755B2A3FFA2A55406B5F17BA8E660FC0052729D7B02855400E04022231120FC0A0228E450026554086799131ACAB0EC0A9868C5DF2225540344B9F6937330EC07C8B57F2901F5540B003054B0AA90DC07C6922D7E51B5540772E9C565C0D0DC00C5920DFFA1755405C563E0D65600CC0879284DDD91355401406C5EF5BA20BC0524E82A58C0F55401BC9097F78D30AC0C9C44C0A1D0B5540272AE63BF2F309C0522E17DF9406554099B433A7000409C047C314F7FD01554008F3CB41DB0308C00FBC782562FD5440BA70888CB9F306C00651763DCBF854409BB84208D3D305C08DBA401243F45440D555D4355FA404C006310B77D3EF544055D31696956503C0D0EC083F86EB544026BCE3A9AD1702C04C266D3D65E754401A9B14F2DEBA00C0DA156B457AE3544021F705DFC19EFEBFDAF3352ACFDF5440BAD01046D6AAFBBFAFF800BF6DDC544012D9FC1A6A9AF8BFB65CFFD65FD9544040267D5FEC6DF5BF51586445AFD654405ACE4415CC25F2BFE12363DD65D4544077CE0D7CF084EDBFC4F72E728DD25440F60DEDB6BF88E6BF5E0CFBD62FD154409F0F1BBDC7AFDEBF0E9AFADE56D05440259D55D9EBCCCFBF32D9605D0CD05440D723B66AC0E886BF01020000002000000032D9605D0CD05440D723B66AC0E886BF0E9AFADE56D0544044B2EA777B6DCD3F5E0CFBD62FD15440756A1982C5B8DD3FC4F72E728DD2544035A25ED9AD26E63FE12363DD65D45440BCD4C3588539ED3F51586445AFD6544020D68738170AF23FB65CFFD65FD95440A9C50A2AF75AF53FAFF800BF6DDC54407968D419058FF83FDAF3352ACFDF5440A06FCEA0E3A5FB3FDA156B457AE35440D58AE257359FFE3F4C266D3D65E754407835FD6B4EBD0040D0EC083F86EB54402AE0FF5CDE1B024006310B77D3EF54407A1D6ECB1B6B03408DBA401243F45440D3C5BC03D8AA04400651763DCBF854402DB16052E4DA05400FBC782562FD5440BCB7CE0312FB064047C314F7FD015540CDB17B64320B0840522E17DF940655407577DCC0160B0940C9C44C0A1D0B554004E1656590FA0940524E82A58C0F554090C68C9E70D90A40879284DDD91355402D00C6B888A70B400A5920DFFA17554046668600AA640C407C6922D7E51B5540D5D042C2A5100D407C8B57F2901F55402818704A4DAB0D40A9868C5DF2225540391483E571340E40A0228E45002655408E9DF0DFE4AB0E40052729D7B0285540058C2D8677110F40755B2A3FFA2A554008B8AE24FB640F4092875EAAD22C554091F9E80741A60F40F7729245302E5540ED28517C1AD50F404AE5923D092F55406C1E5CCE58F10F4024A62CBF532F5540EAB17E4ACDFA0F40010200000020000000E22C04BD702E55C0961ADE9525FE0FC0086C6A3B262E55C050E9B46790F40FC0B9F969434D2D55C0095DCADDF5D70FC04E0E36A8EF2B55C0B000F8788DA80FC033E2013D172A55C04F5F17BA8E660FC0C1AD00D5CD2755C0F103022231120FC060A965431D2555C069799131ACAB0EC0650D645B0F2255C0174B9F6937330EC03A122FF0AD1E55C09303054B0AA90DC03AF0F9D4021B55C05B2E9C565C0D0DC0C4DFF7DC171755C040563E0D65600CC044195CDBF61255C0F705C5EF5BA20BC010D559A3A90E55C0FFC8097F78D30AC0894B24083A0A55C00B2AE63BF2F309C010B5EEDCB10555C07CB433A7000409C0054AECF41A0155C0ECF2CB41DB0308C0CD4250237FFC54C09D70888CB9F306C0C4D74D3BE8F754C07FB84208D3D305C04D41181060F354C0B955D4355FA404C0C4B7E274F0EE54C039D31696956503C08C73E03CA3EA54C009BCE3A9AD1702C00AAD443B82E654C0FD9A14F2DEBA00C0989C424397E254C0E8F605DFC19EFEBF987A0D28ECDE54C081D01046D6AAFBBF6B7FD8BC8ADB54C0D9D8FC1A6A9AF8BF72E3D6D47CD854C007267D5FEC6DF5BF0DDF3B43CCD554C021CE4415CC25F2BF9FAA3ADB82D354C005CE0D7CF084EDBF827E0670AAD154C0840DEDB6BF88E6BF1B93D2D44CD054C0BB0E1BBDC7AFDEBFCA20D2DC73CF54C05C9B55D9EBCCCFBFF05F385B29CF54C04C07B66AC0E886BF010200000020000000F05F385B29CF54C04C07B66AC0E886BFCC20D2DC73CF54C00CB4EA777B6DCD3F1E93D2D44CD054C0596B1982C5B8DD3F847E0670AAD154C0A8A25ED9AD26E63F9FAA3ADB82D354C02ED5C3588539ED3F0DDF3B43CCD554C059D68738170AF23F77E3D6D47CD854C0E2C50A2AF75AF53F697FD8BC8ADB54C0B368D419058FF83F9A7A0D28ECDE54C0D96FCEA0E3A5FB3F969C424397E254C00E8BE257359FFE3F06AD443B82E654C09535FD6B4EBD00408C73E03CA3EA54C047E0FF5CDE1B0240C6B7E274F0EE54C0971D6ECB1B6B03404B41181060F354C0EFC5BC03D8AA0440C2D74D3BE8F754C04AB16052E4DA0540CD4250237FFC54C0D8B7CE0312FB0640054AECF41A0155C0E9B17B64320B08400EB5EEDCB10555C09277DCC0160B0940874B24083A0A55C021E1656590FA094010D559A3A90E55C0ACC68C9E70D90A4044195CDBF61255C04900C6B888A70B40C8DFF7DC171755C063668600AA640C403AF0F9D4021B55C0F2D042C2A5100D403A122FF0AD1E55C04518704A4DAB0D40670D645B0F2255C0561483E571340E405EA965431D2555C0AB9DF0DFE4AB0E40C1AD00D5CD2755C0228C2D8677110F4033E2013D172A55C025B8AE24FB640F40500E36A8EF2B55C0ADF9E80741A60F40B5F969434D2D55C00929517C1AD50F40086C6A3B262E55C0881E5CCE58F10F40E22C04BD702E55C006B27E4ACDFA0F40010200000002000000090DFD13DCEC50C0F9C57DF502FD1DC0090DFD13DCEC50C088AFD1CD59FE11C0010200000002000000652D3E05C0AD51C0F9C57DF502FD1DC0652D3E05C0AD51C088AFD1CD59FE11C00102000000020000009CE61DA7485056C09C6A8885B53D45C09CE61DA7485056C083D5FE8BF61745C00102000000020000009CE61DA7485056C083D5FE8BF61745C09CE61DA7485056C0961ADE9525FE0FC00102000000020000009CE61DA7485056C0961ADE9525FE0FC09CE61DA7485056C0744C65C3B65309C00102000000020000009CE61DA7485056C0744C65C3B65309C09CE61DA7485056C094417C483B0C09400102000000020000009CE61DA7485056C094417C483B0C09409CE61DA7485056C006B27E4ACDFA0F400102000000020000009CE61DA7485056C006B27E4ACDFA0F409CE61DA7485056C06A4459C6261845400102000000020000009CE61DA7485056C06A4459C6261845409CE61DA7485056C0899BF80F8E3D454001020000000A00000037B9DFA1A87B5140C47BB372D434424034B213401EAD51405921F1FE403242408A986E80E8DD5140401940999C2A4240DF13B8DBF60D5240326E0132081E4240DACBB7CA383D5240EA2A96B9A40C4240216835C69D6B52402A5A5F2093F641405490F84615995240B006BE56F4DB41401FECC8C58EC552402E3B134DE9BC414026236EBBF9F052406402C0F392994140F2E68F3F7C185340C584047EAC744140010200000018000000F2E68F3F7C185340C584047EAC7441400EDDAFA0451B53401167253B127241407BC155EE61445340F173A413884641401378271D3E6C5340BF339E6D151741407FA8ECA5C992534034B17339DBE3404061FA6C01F4B7534015F78567FAAC4040621570A8ACDB5340111036E89372404023A1BD13E3FD5340EC06E5ABC83440404D451DBC861E5440C0CCE74573E73F4085A9561A873D54405672877B0F5F3F40717531A7D35A544018146BD9A7D03E40B45075DB5B7654406AC754407E3C3E40F8E2E92F0F905440D8A10691D4A23D40DED3561DDDA75440D1B842ACEC033D4010CB831CB5BD5440CA21CB7208603C402F7038A686D1544043F261C569B73B40E56A3C3341E35440AE3FC984520A3B40D462573CD4F25440871FC39104593A40A4FF503A2F00554044A711CDC1A33940FAE8F0A5410B55405EEC7617CCEA38407DC6FEF7FA1355405404B551652E3840CF3F42A94A1A55408B048E5CCF6E374097FC8232201E55409102C4184CAC36407DA4880C6B1F5540CD1319671DE7354001020000001F0000007DA4880C6B1F5540CD1319671DE73540F6B1C336201E5540A23E0DB2F021354007ECB3B94A1A55403FBD32286F5F34402EEDB71BFB1355403DB1AFADDA9F3340E14F2EE3410B5540323CAA2675E332409EAE75962F005540B17F4877802A3240DFA3ECBBD4F25440559DB0833E7531401DCAF1D941E35440ACB60830F1C33040D6BBE37687D1544058ED7660DA16304083132119B6BD5440C6C542F277DC2E409F6B0847DEA75440D6715CBCAF942D40A35EF88610905440102287E7DF562C400E874F5F5D76544096190F3C8C232B40567F6C56D55A5440969B408238FB2940F9E1ADF2883D54403AEB678268DE2840714972BA881E5440A94BD104A0CD274039501834E5FD53402100C9D162C92640CA90FEE5AEDB5340C44B9BB134D225409FA58356F6B75340C171946C99E824403629060CCC92534040B500CB140D244007B6E48C406C534069592C952A4023408CE67D5F6444534073A163935E8222404255300A481B534087D0F28D34D42140A49C5A13FCF05240CD29264D303621402A575B0191C5524073F04999D5A82040501F915A17995240AB67AA3AA82C2040918F5AA59F6B52401AA527F357841F40684216683A3D5240D9E8A43CC9D31E4050D22229F80D52409E2065E2AB481E40C5D9DE6EE9DD5140D5D2007507E41D4057FAD005B5AD5140EC9396D39FA71D4001020000000300000057FAD005B5AD5140EC9396D39FA71D403FF3A8BF1EAD5140F9851085E3A61D4037B9DFA1A87B51404EC02CA347921D4001020000000B00000037B9DFA1A87B51404EC02CA347921D4039C0AB03334A5140A7933F41E3A61D40E3D950C36819514098D4C76E06E41D408D5E07685AE95040FB2CBDA8A9481E4093A6077918BA50401047176CC5D31E404D0A8A7DB38B50400ACDCD3552841F4017E2C6FC3B5E50407E346C41A42C20404E86F67DC231504086621768D0A82040484F518857065040A04564CD29362140C42A1F4617B84F40DCB2CEAF2CD421409C41779D7EB24F40AFF7CB4E07E021400102000000170000009C41779D7EB24F40AFF7CB4E07E02140E861D3AADE654F405C7FD24D55822240B5F42F4D26164F403180EBE51F402340DD93A53B0FC94E40578A95B6080D244019F0A484BA7E4E40E0724CFE8BE824401CBA9E3649374E40F30E8CFB25D2254096A20360DCF24D408533D0EC52C92640425A440F95B14D40A8B594108FCD2740D191D15294734D40826A55A556DE2840F9F91B39FB384D4011278EE925FB2940734394D0EA014D405EC0BA1B79232B40EE1EAB2784CE4C40820B577ACC562C401F3DD14CE89E4C409EDDDE439C942D40BC4E774E38734C40A60BCEB664DC2E407D040E3B954B4C405935D008D1163040120F062120284C40EFE76849E8C33040331FD00EFA084C4012086F3C3675314093E5DC1244EE4B4052802001792A3240E7129D3B1FD84B40383BBBB66EE33240E5578197ACC64B404C237D7CD59F33403E65FA340DBA4B400A23A4716B5F3440ACEB782262B24B4009256EB5EE213540E19B6D6ECCAF4B40CD1319671DE73540010200000020000000E19B6D6ECCAF4B40CD1319671DE73540EF80F71962B24B40FAE8241C4AAC3640CD0C17140DBA4B405A6AFFA5CB6E3740800A0F50ACC64B4060768220602E3840194522C11ED84B406BEB87A7C5EA3840A387935A43EE4B40E9A7E956BAA33940229DA50FF9084C404B8A814AFC583A40A1509BD31E284C40E970299E490A3B40326DB799934B4C40413ABB6D60B73B40D9BD3C5536734C40AFC410D5FE5F3C40A10D6EF9E59E4C40A3EE03F0E2033D4095278E7981CE4C4091966EDACAA23D40C0D6DFC8E7014D40CB9A2AB0743C3E4030E6A5DAF7384D40CED9118D9ED03E40E92023A290734D40FA31FE8C065F3F40F9519A1291B14D40C381C9CB6AE73F4069444E1FD8F24D40C3D3A6B2C434404047C381BB44374E40DC40B23A907240409D9977DAB57E4E405FF7F30BF7AC40406F92726F0AC94E407EE65834D8E34040D078B56D21164F4071FDCDC112174140C31783C8D9654F40712B40C285464140573A1E7312B84F40AD5F9C4310724140CBD56430550650405A89CF5391994140451B6442C0315040B197C600E8BC41401D532EE9395E5040E3796E58F3DB4140DCE2649EB18B5040271FB46892F641400530A9DB16BA5040B276843FA40C42401DA09C1A59E95040B86FCCEA071E4240A998E0D46719514071F978789C2A4240317F1684324A51400C0377F64032424037B9DFA1A87B5140C47BB372D4344240010200000002000000CD49EF1B1F5156409D6A8885B53D45C0CD49EF1B1F515640277EFC11F41745C0010200000002000000CD49EF1B1F515640277EFC11F41745C0CD49EF1B1F515640B31ADE9525FE0FC0010200000002000000CD49EF1B1F515640B31ADE9525FE0FC0CD49EF1B1F515640BFDF0387575309C0010200000002000000CD49EF1B1F515640BFDF0387575309C0CD49EF1B1F51564024F64C02D70B0940010200000002000000CD49EF1B1F51564024F64C02D70B0940CD49EF1B1F515640EAB17E4ACDFA0F40010200000002000000CD49EF1B1F515640EAB17E4ACDFA0F40CD49EF1B1F51564008ED564C24184540010200000002000000CD49EF1B1F51564008ED564C24184540CD49EF1B1F515640899BF80F8E3D45400102000000030000003853E8BC06CD5040769ABB4C03E539C03853E8BC06CD5040DA94D00259E536C03AB324408D984F40DA94D00259E536C00102000000030000003853E8BC06CD5040D840A9AC5C1632C03853E8BC06CD5040744694F6061635C03AB324408D984F40744694F6061635C001020000000300000048809A5AB6CD5140769ABB4C03E539C048809A5AB6CD5140DA94D00259E536C0E479707776CE5240DA94D00259E536C001020000000300000048809A5AB6CD5140D840A9AC5C1632C048809A5AB6CD5140744694F6061635C0E479707776CE5240744694F6061635C00102000000030000003A53E8BC06CD5040B08394E9E11532403A53E8BC06CD50404C897F338C1535403AB324408D984F404C897F338C15354001020000000300000048809A5AB6CD5140367870C163E5394048809A5AB6CD51409A728577B9E53640E479707776CE52409A728577B9E536400102000000030000009BB67F65E5CC51C0B38394E9E11532409BB67F65E5CC51C050897F338C15354039B05582A5CD52C050897F338C1535400102000000030000009BB67F65E5CC51C03A7870C163E539409BB67F65E5CC51C09E728577B9E5364039B05582A5CD52C09E728577B9E536400102000000030000008E89CDC735CC50C0B38394E9E11532408E89CDC735CC50C050897F338C153540E41FEF55EB964FC050897F338C1535400102000000030000008E89CDC735CC50C03A7870C163E539408E89CDC735CC50C09E728577B9E53640E41FEF55EB964FC09E728577B9E536400102000000030000009BB67F65E5CC51C0729ABB4C03E539C09BB67F65E5CC51C0D694D00259E536C039B05582A5CD52C0D694D00259E536C00102000000030000009BB67F65E5CC51C0D440A9AC5C1632C09BB67F65E5CC51C0704694F6061635C039B05582A5CD52C0704694F6061635C00102000000030000008E89CDC735CC50C0729ABB4C03E539C08E89CDC735CC50C0D694D00259E536C0E41FEF55EB964FC0D694D00259E536C00102000000030000008E89CDC735CC50C0D440A9AC5C1632C08E89CDC735CC50C0704694F6061635C0E41FEF55EB964FC0704694F6061635C0010200000002000000FBD98F14D1EC5040A133C40CE8BD43C0FBD98F14D1EC5040E8CFD8EE5E4042C0010200000002000000FBD98F14D1EC5040E8CFD8EE5E4042C0FBD98F14D1EC5040D3B0CEE7123E42C001020000000200000057FAD005B5AD5140A133C40CE8BD43C057FAD005B5AD51409577ACF35E4042C001020000000200000057FAD005B5AD51409577ACF35E4042C057FAD005B5AD5140D3B0CEE7123E42C0010200000002000000FBD98F14D1EC504007C67DF502FD1DC0FBD98F14D1EC504096AFD1CD59FE11C001020000000200000057FAD005B5AD514007C67DF502FD1DC057FAD005B5AD514096AFD1CD59FE11C0010200000002000000652D3E05C0AD51C0A033C40CE8BD43C0652D3E05C0AD51C0D1B0CEE7123E42C0010200000002000000090DFD13DCEC50C0A033C40CE8BD43C0090DFD13DCEC50C0D1B0CEE7123E42C0010200000002000000652D3E05C0AD51C06A11B2E20AFE1140652D3E05C0AD51C04FFDEABDD9681D40010200000002000000652D3E05C0AD51C04FFDEABDD9681D40652D3E05C0AD51C0DC275E0AB4FC1D40010200000002000000090DFD13DCEC50C06A11B2E20AFE1140090DFD13DCEC50C0DD1D47EE86851D40010200000002000000090DFD13DCEC50C0DD1D47EE86851D40090DFD13DCEC50C0DC275E0AB4FC1D40010200000002000000652D3E05C0AD51C05556783CD23D4240652D3E05C0AD51C024D96D61A7BD4340010200000002000000090DFD13DCEC50C05556783CD23D4240090DFD13DCEC50C024D96D61A7BD4340010200000002000000FBD98F14D1EC50405C11B2E20AFE1140FBD98F14D1EC5040CE275E0AB4FC1D4001020000000200000057FAD005B5AD51405C11B2E20AFE114057FAD005B5AD5140EC9396D39FA71D4001020000000200000057FAD005B5AD5140EC9396D39FA71D4057FAD005B5AD51404150E3B526DB1D4001020000000200000057FAD005B5AD51404150E3B526DB1D4057FAD005B5AD5140CE275E0AB4FC1D40010200000002000000FBD98F14D1EC50405256783CD23D4240FBD98F14D1EC504020D96D61A7BD4340010200000020000000296A300D434D514036C35785173E1EC0266364ABB87E514082966A23B3521EC07C49BFEB82AF514064D7F250D68F1EC0D3C4084791DF5140C72FE88A79F41EC0CD7C0836D30E5240EB49424E957F1FC013198631383D52400068FC0B111820C0484149B2AF6A5240ECB581328C8220C0129D193129975240FBE32C59B8FE20C018D4BE2694C252400DC779BE118C21C0008E000CE0EC52405F34E4A0142A22C06E72A659FC155340DF00E83E3DD822C006297888D83D5340A60101D7079623C071593D1164645340CC0BABA7F06224C055ABBD6C8E89534063F461EF733E25C054C6C01347AD53406490A1EC0D2826C015520E7F7DCF5340F6B4E5DD3A1F27C03FF66D2721F053402337AA01772328C0785AA785210F5440EFEB6A963E3429C0632682126E2C544081A8A3DA0D512AC0A601C646F6475440D241D00C61792BC0EB933A9BA9615440FD8C6C6BB4AC2CC0D184A788777954400B5FF43484EA2DC0027CD4874F8F5440168DE3A74C322FC02221891121A3544014F65A01C54130C0D71B8D9EDBB45440A8A8F341DCEE30C0C613A8A76EC45440CCC8F9342AA031C098B0A1A5C9D154401041ABF96C5532C0ED994111DCDC5440F4FB45AF620E33C06F774F6395E5544003E40775C9CA33C0C1F09214E5EB5440C6E32E6A5F8A34C08AADD39DBAEF5440C3E5F8ADE24C35C06F55D97705F1544087D4A35F111236C001020000001F0000006F55D97705F1544087D4A35F111236C0E86214A2BAEF5440B3A9AF143ED736C0F99C0425E5EB5440152B8A9EBF9937C0209E088795E5544016370D19545938C0D4007F4EDCDC544020AC12A0B91539C0905FC601CAD15440A568744FAECE39C0CF543D276FC45440004B0C43F0833AC0107B4245DCB45440A531B4963D353BC0C76C34E221A35440FBFA456654E23BC075C47184508F54406F859BCDF28A3CC0911C59B27879544065AF8EE8D62E3DC0950F49F2AA6154404B57F9D2BECD3DC00038A0CAF74754408A5BB5A868673EC04830BDC16F2C54408A9A9C8592FB3EC0EC92FE5D230F5440B6F28885FA893FC063FAC22523F053403E212A622F0940C02B01699F7FCF53402134ECAE3E4A40C0BD414F5149AD534038A1F7360A8840C09256D4C190895340B957390871C240C028DA567766645340DB469E3052F940C0F86635F8DA3D5340CF5D13BE8C2C41C07E97CECAFE155340CD8B85BEFF5B41C034068175E2EC524009C0E13F8A8741C0944DAB7E96C25240B7E914500BAF41C01B08AC6C2B9752400EF80BFD61D241C042D0E1C5B16A524041DAB3546DF141C08440AB103A3D5240857FF9640C0C42C05BF366D3D40E52400FD7C93B1E2242C04283739492DF514016D011E7813342C0B78A2FDA83AF5140CD59BE74164042C057FAD005B5AD51409577ACF35E4042C001020000000300000057FAD005B5AD51409577ACF35E4042C031A4F92AB97E51406A63BCF2BA4742C0296A300D434D514020DCF86E4E4A42C0010200000003000000296A300D434D514020DCF86E4E4A42C02C71FC6ECD1B5140B48136FBBA4742C0FBD98F14D1EC5040E8CFD8EE5E4042C001020000001F000000FBD98F14D1EC5040E8CFD8EE5E4042C0D68AA12E03EB504099798595164042C07F0F58D3F4BA50408CCE462E823342C0845758E4B28B5040488BDBB51E2242C03FBBDAE84D5D504089BAA41C0D0C42C00A931768D62F50400B6703536EF141C0413747E95C035040899B584963D241C0750044E7E3AF4F40C26205F00CAF41C0A88CC01C4C5B4F4071C76A378C8741C0CDC3748113094F4050D4E90F025C41C09956D1235BB94E401C94E3698F2C41C0C2F54612446C4E409311B93555F940C0FD51465BEF214E407057CB6374C240C0001C400D7EDA4D406D707BE40D8840C07A04A53611964D4048672AA8424A40C026BCE5E5C9544D40BF46399F330940C0B5F37229C9164D4012331274038A3FC0DE5BBD0F30DC4C40CFD4F5D19BFB3EC058A535A71FA54C402588DF3872673EC0D3804CFEB8714C408F629189C8CD3DC0009F72231D424C408679CDA4E02E3DC0A0B018256D164C4082E2556BFC8A3CC06166AF11CAEE4B40FAB2ECBD5DE23BC0F770A7F754CB4B406600547D46353BC0188171E52EAC4B4040E04D8AF8833AC078477EE978914B40FE679CC5B5CE39C0C8743E12547B4B4018AD0110C01539C0C6B9226EE1694B4009C53F4A595938C022C79B0B425D4B4046C51855C39937C0914D1AF996554B4049C34E1140D736C0C6FD0E4501534B4085D4A35F111236C0010200000020000000C6FD0E4501534B4085D4A35F111236C0D4E298F096554B4059FF97AAE44C35C0AE6EB8EA415D4B40F47DBD20638A34C0646CB026E1694B40F4713AA6CECA33C0FDA6C397537B4B40E7FC341F690E33C087E9343178914B406940D36F745532C003FF46E62DAC4B40085E3B7C32A031C085B23CAA53CB4B4066779328E5EE30C013CF5870C8EE4B4012AE0159CE4130C0BA1FDE2B6B164C40454758E35F322FC0866F0FD01A424C4058F371AD97EA2DC07A892F50B6714C4088A39CD8C7AC2CC0A438819F1CA54C400A9B242D74792BC0144847B12CDC4C40041D567320512AC0CD82C478C5164D40AB6C7D73503429C0DEB33BE9C5544D401DCDE6F5872328C04EA6EFF50C964D409681DEC24A1F27C02F25239279DA4D4039CDB0A21C2826C082FB18B1EA214E4035F3A95D813E25C054F413463F6C4E40AD3616BCFC6224C0B5DA564456B94E40DDDA4186129623C0A879249F0E094F40E122798446D822C03C9CBF49475B4F40F451087F1C2A22C07C0D6B37DFAF4F403AAB3B3E188C21C037CCB4AD5A035040E1715F8ABDFE20C010047F54D42F504018E9BF2B908220C0CF93B5094C5D50400854A9EA131820C0F7E0F946B18B5040B4EBCF1E997F1FC01051ED85F3BA5040872390C47BF41EC09B49314002EB5040CCD52B57D78F1EC0233067EFCC1B5140F0883B67B3521EC0296A300D434D514036C35785173E1EC001020000000B00000084CE6BEC12765140ADEA515D653A42407FC79F8A88A7514046908FE9D1374240D7ADFACA52D851402988DE832D3042402D294426610852401BDD9F1C9923424027E14315A3375240D79934A4351242406C7DC1100866524014C9FD0A24FC4140A1A584917F93524099755C4185E141406C015510F9BF52401BAAB1377AC241407238FA0564EB524051715EDE239F41405AF23BEBAF155340FED5C325A3774140F2E68F3F7C185340C584047EAC744140010200000017000000F2E68F3F7C185340C584047EAC744140C6D6E138CC3E5340DAE242FE184C4140608DB367A8665340A9A23C58A61C4140CCBD78F0338D5340212012246CE94040AE0FF94B5EB25340FF6524528BB24040AE2AFCF216D65340FA7ED4D22478404070B6495E4DF85340D6758396593A4040995AA906F11854409AAA241B95F23F40D2BEE264F13754403050C450316A3F40BC8ABDF13D555440EEF1A7AEC9DB3E4001660126C670544041A59115A0473E4045F8757A798A5440AB7F4366F6AD3D402BE9E26747A25440A4967F810E0F3D405DE00F671FB85440A0FF07482A6B3C407C85C4F0F0CB544016D09E9A8BC23B403180C87DABDD5440841D065A74153B402178E3863EED54405EFDFF6626643A40F314DD8499FA54401A854EA2E3AE394047FE7CF0AB05554038CAB3ECEDF53840C8DB8A42650E554027E2F126873938401C55CEF3B414554062E2CA31F1793740E4110F7D8A18554067E000EE6DB73640CAB91457D5195540A3F1553C3FF2354001020000001F000000CAB91457D5195540A3F1553C3FF2354043C74F818A185540791C4A87122D354054014004B5145540199B6FFD906A344079024466650E5540108FEC82FCAA33402C65BA2DAC055540081AE7FB96EE3240E9C301E199FA5440835D854CA23532402AB978063FED54402F7BED58608031406ADF7D24ACDD54408394450513CF304023D16FC1F1CB54402FCBB335FC213040D028AD6320B854407381BC9CBBF22E40EC80949148A25440832DD666F3AA2D40F07384D17A8A5440BDDD0092236D2C405B9CDBA9C770544043D588E6CF392B40A394F8A03F5554403C57BA2C7C112A4046F7393DF3375440E0A6E12CACF42840BE5EFE04F31854405D074BAFE3E327408465A47E4FF85340D6BB427CA6DF264017A68A3019D653407107155C78E82540ECBA0FA160B253406E2D0E17DDFE2440833E9256368D5340E5707A755823244054CB70D7AA6653401615A63F6E562340D9FB09AACE3E5340205DDD3DA29822408F6ABC54B2155340348C6C3878EA2140F1B1E65D66EB524073E59FF7734C2140756CE74BFBBF524020ACC34319BF20409D341DA581935240512324E5EB422040DEA4E6EF09665240741C1B48DFB01F40B557A2B2A43752403360989150001F409FE7AE7362085240F897583733751E4011EF6AB953D851403D4AF4C98E101E4057FAD005B5AD51404150E3B526DB1D4001020000000300000057FAD005B5AD51404150E3B526DB1D408A08350A89A7514053FD03DA6AD31D4084CE6BEC12765140A73720F8CEBE1D4001020000000A00000084CE6BEC12765140A73720F8CEBE1D4086D5374E9D4451400F0B33966AD31D402EEFDC0DD3135140F14BBBC38D101E40DA7393B2C4E3504046A4B0FD30751E40E0BB93C382B450405CBE0AC14C001F409A1F16C81D8650405544C18AD9B01F4064F75247A65850402BF0E5EBE74220409B9B82C82C2C5040251E911214BF20409564DDD2C10050404501DE776D4C21409C41779D7EB24F40AFF7CB4E07E021400102000000180000009C41779D7EB24F40AFF7CB4E07E021405A5537DBEBAC4F40906E485A70EA2140828CEB3FB35A4F40103B4CF8989822404E1F48E2FA0A4F40D73B65906356234077BEBDD0E3BD4E4004460F614C232440B21ABD198F734E40942EC6A8CFFE2440B2E4B6CB1D2C4E4099CA05A669E825402FCD1BF5B0E74D4032EF499796DF2640DB845CA469A64D405C710EBBD2E327406ABCE9E768684D402826CF4F9AF42840932434CECF2D4D40B6E2079469112A400C6EAC65BFF64C400A7C34C6BC392B408449C3BC58C34C4036C7D024106D2C40B867E9E1BC934C404A9958EEDFAA2D4055798FE30C684C404BC74761A8F22E40162F26D069404C4030130DDEF2213040AC391EB6F41C4C40C2C5A51E0ACF3040CD49E8A3CEFD4B40E8E5AB11588031402910F5A718E34B40285E5DD69A353240803DB5D0F3CC4B400E19F88B90EE32407E82992C81BB4B401F01BA51F7AA3340D78F12CAE1AE4B40E100E1468D6A3440461691B736A74B40DF02AB8A102D35407BC68503A1A44B40A3F1553C3FF235400102000000200000007BC68503A1A44B40A3F1553C3FF2354089AB0FAF36A74B40D1C661F16BB7364063372FA9E1AE4B4034483C7BED793740193527E580BB4B403654BFF581393840B26F3A56F3CC4B4041C9C47CE7F5384039B2ABEF17E34B40BB85262CDCAE3940B8C7BDA4CDFD4B401E68BE1F1E643A403A7BB368F31C4C40C04E66736B153B40C897CF2E68404C401B18F84282C23B406FE854EA0A684C4086A24DAA206B3C403B38868EBA934C407DCC40C5040F3D402B52A60E56C34C406B74ABAFECAD3D405D01F85DBCF64C40A178678596473E40C910BE6FCC2D4D40A8B74E62C0DB3E40824B3B3765684D40D40F3B62286A3F40937CB2A765A64D40965F06A18CF23F40036F66B4ACE74D40AD42459D553A4040E0ED9950192C4E40C6AF50252178404033C48F6F8A734E40486692F687B2404009BD8A04DFBD4E406B55F71E69E9404066A3CD02F60A4F405E6C6CACA31C41405D429B5DAE5A4F405E9ADEAC164C4140F1643608E7AC4F4097CE3A2EA177414016EBF07ABF00504047F86D3E229F41409230F08C2A2C50409E0665EB78C241406A68BA33A4585040D0E80C4384E1414029F8F0E81B865040148E525323FC41405245352681B450409FE5222A351242406AB52865C3E35040A5DE6AD598234240F6AD6C1FD21351405A6817632D3042407E94A2CE9C445140FA7115E1D137424084CE6BEC12765140ADEA515D653A4240010200000020000000CF7A3194535651C031CD19F620274240D381FDF5DD2451C0C97257828D2442407D9BA2B513F450C0AD6AA61CE91C42402820595A05C450C09FBF67B5541042402D68596BC39450C05E7CFC3CF1FE4140E5CBDB6F5E6650C09BABC5A3DFE84140B1A318EFE63850C01D5824DA40CE4140E64748706D0C50C09B8C79D035AF4140C32146F504C24FC0D4532677DF8B4140F0ADC22A6D6D4FC082B88BBE5E64414014E5768F341B4FC05EC50A97D4384140E477D3317CCB4EC0308504F1610941400D174920657E4EC0A502DABC27D640404873486910344EC07F48ECEA469F4040473D421B9FEC4DC081619C6BE0644040C525A74432A84DC059584B2F1527404071DDE7F3EA664DC0A16FB44C0CCC3F4000157537EA284DC038155482A8433F402C7DBF1D51EE4CC0F6B637E040B53E40A2C637B540B74CC04C6A214717213E401AA24E0CDA834CC0B644D3976D873D404EC074313E544CC0AF5B0FB385E83C40EBD11A338E284CC0A8C49779A1443C40AC87B11FEB004CC021952ECC029C3B404192A90576DD4BC08FE2958BEBEE3A4062A273F34FBE4BC065C28F989D3D3A40BF6880F799A34BC0224ADED35A88394016964020758D4BC03C8F431E65CF384014DB247C027C4BC02EA78158FE1238406DE89D19636F4BC06DA75A6368533740DC6E1C07B8674BC06EA5901FE5903640101F115322654BC0AAB6E56DB6CB354001020000001E000000101F115322654BC0AAB6E56DB6CB354026049BFEB7674BC080E1D9B889063540FD8FBAF8626F4BC01D60FF2E08443440B38DB234027C4BC01B547CB4738433404CC8C5A5748D4BC00CDF762D0EC83240CF0A373F99A34BC08B22157E190F32404E2049F44EBE4BC033407D8AD7593140CDD33EB874DD4BC08A59D5368AA8304061F05A7EE9004CC06C2087CEE6F62F400141E0398C284CC0810BDCFFA9A52E40C99011DE3B544CC099B7F5C9E15D2D40C1AA315ED7834CC0CC6720F511202C40EF5983AD3DB74CC0515FA849BEEC2A405F6949BF4DEE4CC052E1D98F6AC4294018A4C686E6284DC0EE3001909AA7284029D53DF7E6664DC06C916A12D296274099C7F1032EA84DC0E44562DF94922640764625A09AEC4DC0809134BF669B2540CC1C1BBF0B344EC07DB72D7ACBB124409F151654607E4EC0FBFA99D846D62340FCFB585277CB4EC0259FC5A25C092340F39A26AD2F1B4FC02FE7FCA0904B224087BDC157686D4FC03C168C9B669D2140C62E6D4500C24FC0886FBF5A62FF2040DDDCB5346B0C50C02F36E3A607722040B51480DBE43850C0CD5A8790B4EB1F4072A4B6905C6650C09F305A0EBC161F409DF1FACDC19450C05174D7572D661E40B561EE0C04C450C015AC97FD0FDB1D40090DFD13DCEC50C0DD1D47EE86851D40010200000004000000090DFD13DCEC50C0DD1D47EE86851D40415A32C712F450C05A5E33906B761D40C7406876DD2451C0711143A047391D40CF7A3194535651C0C54B5FBEAB241D40010200000003000000CF7A3194535651C0C54B5FBEAB241D40CC736532C98751C02D1F725C47391D40652D3E05C0AD51C04FFDEABDD9681D4001020000001F000000652D3E05C0AD51C04FFDEABDD9681D40245AC07293B851C00060FA896A761D4078D509CEA1E851C055B8EFC30DDB1D40768D09BDE31752C096D2498729661E40B82987B8484652C073580051B6161F40EE514A39C07352C074F40A9EACEB1F40B7AD1AB839A052C03BA8B07502722040BFE4BFADA4CB52C05B8BFDDA5BFF2040A59E0193F0F552C09FF867BD5E9D21401183A7E00C1F53C01FC56B5B874B2240AD39790FE94653C0EDC584F351092340196A3E98746D53C013D02EC43AD62340F9BBBEF39E9253C0AAB8E50BBEB12440F9D6C19A57B653C0B6542509589B2540BC620F068ED853C0417969FA84922640E4066FAE31F953C06AFB2D1EC19627401D6BA80C321854C037B0EEB288A72840093783997E3554C0CC6C27F757C429404C12C7CD065154C020065429ABEC2A4090A43B22BA6A54C04551F087FE1F2C407695A80F888254C059237851CE5D2D40A88CD50E609854C0615167C496A52E40C9318A9831AC54C076B0391FD4F62F407E2C8E25ECBD54C0CD8A355081A830406C24A92E7FCD54C0F0AA3B43CF5931403CC1A22CDADA54C03323ED07120F324094AA4298ECE554C019DE87BD07C83240138850EAA5EE54C026C649836E8433406701949BF5F454C0E8C57078044434402FBED424CBF854C0E6C73ABC870635401566DAFE15FA54C0AAB6E56DB6CB35400102000000200000001566DAFE15FA54C0AAB6E56DB6CB354090731529CBF854C0D88BF122E3903640A0AD05ACF5F454C03C0DCCAC64533740C5AE090EA6EE54C03D194F27F9123840791180D5ECE554C04C8E54AE5ECF38403470C788DADA54C0C34AB65D5388394076653EAE7FCD54C0252D4E51953D3A40B38B43CCECBD54C0CB13F6A4E2EE3A406E7D356932AC54C022DD8774F99B3B4017D5720B619854C08D67DDDB97443C40332D5A39898254C08191D0F67BE83C403B204A79BB6A54C06F393BE163873D40A648A151085154C0AC3DF7B60D213E40EE40BE48803554C0AC7CDE9337B53E4091A3FFE4331854C0DCD4CA939F433F40090BC4AC33F953C09D2496D203CC3F40CF116A2690D853C030250D3611274040625250D859B653C0499218BEDC6440403967D548A19253C0CC485A8F439F4040CEEA57FE766D53C0EE37BFB724D640409F77367FEB4653C0E24E34455F09414024A8CF510F1F53C0DE7CA645D2384140DA1682FCF2F552C01BB102C75C6441403C5EAC05A7CB52C0C7DA35D7DD8B4140C018ADF33BA052C01EE92C8434AF4140E8E0E24CC27352C053CBD4DB3FCE41402751AC974A4652C097701AECDEE841400204685AE51752C023C8EAC2F0FE4140EA93741BA3E851C029C1326E541042405C9B306194B851C0DE4ADFFBE81C4240D4B4FAB1C98751C07A54DD798D244240CF7A3194535651C031CD19F6202742400102000000200000003FB83B6B374651C0E225D75E55D71DC044BF07CDC11451C03BF9E9FCF0EB1DC0EED8AC8CF7E350C00F3A722A14291EC0975D6331E9B350C08F926764B78D1EC09CA56342A78450C096ACC127D3181FC05709E646425650C09E3278F15FC91FC022E122C6CA2850C04867411F2B4F20C0AD0AA58EA2F84FC04995EC4557CB20C0A19C5AA3CCA14FC06A7839ABB05821C0D128D7D8344D4FC0B5E5A38DB3F621C0F55F8B3DFCFA4EC035B2A72BDCA422C0C5F2E7DF43AB4EC0FFB2C0C3A66223C0EE915DCE2C5E4EC025BD6A948F2F24C02AEE5C17D8134EC0B5A521DC120B25C029B856C966CC4DC0BA4161D9ACF425C0A6A0BBF2F9874DC04C66A5CAD9EB26C05358FCA1B2464DC075E869EE15F027C0E18F89E5B1084DC04C9D2A83DD0029C00AF8D3CB18CE4CC0D35963C7AC1D2AC084414C6308974CC028F38FF9FF452BC0FB1C63BAA1634CC0533E2C5853792CC02F3B89DF05344CC06010B42123B72DC0CC4C2FE155084CC0693EA394EBFE2EC08D02C6CDB2E04BC0BECEBA77142830C0230DBEB33DBD4BC0518153B82BD530C0441D88A1179E4BC077A159AB798631C0A0E394A561834BC0BA190B70BC3B32C0F71055CE3C6D4BC0A0D4A525B2F432C0F655392ACA5B4BC0AEBC67EB18B133C04E63B2C72A4F4BC073BC8EE0AE7034C0BDE930B57F474BC06EBE5824323335C0F2992501EA444BC032AD03D660F835C0010200000020000000F2992501EA444BC032AD03D660F835C0007FAFAC7F474BC05E820F8B8DBD36C0DE0ACFA62A4F4BC0BE03EA140F8037C09108C7E2C95B4BC0C30F6D8FA33F38C02D43DA533C6D4BC0CE84721609FC38C0B0854BED60834BC04E41D4C5FDB439C0329B5DA2169E4BC0AB236CB93F6A3AC0B24E53663CBD4BC0500A140D8D1B3BC0436B6F2CB1E04BC0A6D3A5DCA3C83BC0E3BBF4E753084CC0195EFB4342713CC0AB0B268C03344CC01188EE5E26153DC0A225460C9F634CC0F22F59490EB43DC0D0D4975B05974CC03334151FB84D3EC040E45D6D15CE4CC03573FCFBE1E13EC0F91EDB34AE084DC061CBE8FB49703FC0075052A5AE464DC0261BB43AAEF83FC07A4206B2F5874DC076201C6A663D40C058C1394E62CC4DC08D8D27F2317B40C0AA972F6DD3134EC0104469C398B540C080902A02285E4EC03033CEEB79EC40C0DD766D003FAB4EC0264A4379B41F41C0D4153B5BF7FA4EC02278B579274F41C06838D605304D4FC05EAC11FBB17A41C0A8A981F3C7A14FC00DD6440B33A241C09B3480179EF84FC062E43BB889C541C026528AB2C82850C096C6E30F95E441C0E3E1C067405650C0DA6B292034FF41C00E2F05A5A58450C065C3F9F6451542C0269FF8E3E7B350C06BBC41A2A92642C0B1973C9EF6E350C02346EE2F3E3342C0377E724DC11451C0BF4FECADE23A42C03FB83B6B374651C075C8282A763D42C00102000000200000003FB83B6B374651C075C8282A763D42C03EB16F09AD7751C00A6E66B6E23A42C09497CA4977A851C0EF65B5503E3342C0E91214A585D851C0E2BA76E9A92642C0E4CA1394C70752C09D770B71461542C02767918F2C3652C0DFA6D4D734FF41C05F8F5410A46352C05F53330E96E441C028EB248F1D9052C0DF8788048BC541C03022CA8488BB52C0174F35AB34A241C014DC0B6AD4E552C0C6B39AF2B37A41C07EC0B1B7F00E53C0A6C019CB294F41C01C7783E6CC3653C072801325B71F41C087A7486F585D53C0E8FDE8F07CEC40C06AF9C8CA828253C0C543FB1E9CB540C06814CC713BA653C0C25CAB9F357B40C02BA019DD71C853C09E535A636A3D40C05544798515E953C02866D2B4B6F83FC08EA8B2E3150854C0BF0B72EA52703FC07B748D70622554C079AD5548EBE13EC0BE4FD1A4EA4054C0CF603FAFC14D3EC001E245F99D5A54C03A3BF1FF17B43DC0E8D2B2E66B7254C031522D1B30153DC018CADFE5438854C02BBBB5E14B713CC0386F946F159C54C0A58B4C34ADC83BC0EF6998FCCFAD54C011D9B3F3951B3BC0DD61B30563BD54C0EAB8AD00486A3AC0ACFEAC03BECA54C0AB40FC3B05B539C004E84C6FD0D554C0C58561860FFC38C085C55AC189DE54C0B59D9FC0A83F38C0D73E9E72D9E454C0F49D78CB128037C0A0FBDEFBAEE854C0F69BAE878FBD36C086A3E4D5F9E954C032AD03D660F835C001020000002000000086A3E4D5F9E954C032AD03D660F835C0FFB01F00AFE854C002D8F720343335C011EB0F83D9E454C0A2561D97B27034C036EC13E589DE54C0A04A9A1C1EB133C0EB4E8AACD0D554C095D59495B8F432C0A5ADD15FBECA54C0171933E6C33B32C0E9A2488563BD54C0B6369BF2818631C024C94DA3D0AD54C01350F39E34D530C0DDBA3F40169C54C0BD8661CF1D2830C088127DE2448854C09AF817D0FEFE2EC0A46A64106D7254C0AEA4319A36B72DC0AB5D54509F5A54C0DE545CC566792CC01486AB28EC4054C0604CE41913462BC05E7EC81F642554C060CE1560BF1D2AC003E109BC170854C0001E3D60EF0029C07948CE8317E953C0777EA6E226F027C0414F74FD73C853C0F3329EAFE9EB26C0D38F5AAF3DA653C08E7E708FBBF425C0A9A4DF1F858253C087A4694A200B25C03E2862D55A5D53C003E8D5A89B2F24C010B54056CF3653C0338C0173B16223C096E5D928F30E53C03DD43871E5A422C04C548CD3D6E552C04A03C86BBBF621C0AC9BB6DC8ABB52C0905CFB2AB75821C03156B7CA1F9052C03D231F775CCB20C0591EED23A66352C06E9A7F182F4F20C0988EB66E2E3652C0CA0AD2AE65C91FC073417231C90752C05F4E4FF8D6181FC05AD17EF286D851C032860F9EB98D1EC0CBD83A3878A851C07738AB3015291EC045F20489AD7751C09CEBBA40F1EB1DC03FB83B6B374651C0E225D75E55D71DC00102000000200000006808963C410F5140D44841737A0136C04A11C95B570F51400CCC6E7147F435C044CE2AFD980F5140D17DF15B42E735C0E032680605105140CC42AA986FDA35C0A3322E5D9A105140A2FF798DD3CD35C010C129E757115140F49841A072C135C0ADD1078A3C1251406DF3E13651B535C00058752B47135140B7F33BB773A935C08E471FB176145140747E3087DE9D35C0DE93B200CA1551404878A00C969235C07330DCFF3F175140E1C56CAD9E8735C0D2104994D7185140DA4B76CFFC7C35C08228A6A38F1A5140E4EE9DD8B47235C0086BA013671C5140A193C42ECB6835C0EBCBE4C95C1E5140B41ECB37445F35C0AF3E20AC6F205140C9749259245635C0D9B6FF9F9E225140877AFBF96F4D35C0EE27308BE82451408C14E77E2B4535C074855E534C2751408627364E5B3D35C0F1C237DEC82951401898C9CD033635C0E9D368115D2C5140EB4A8263292F35C0E2AB9ED2072F5140A1244175D02835C0633E8607C8315140E709E768FD2235C0EE7ECC959C3451405CDF54A4B41D35C00C611E6384375140A9896B8DFA1835C040D828557E3A51407AED0B8AD31435C011D89851893D51406DEF1600441135C002541B3EA440514028746D55500E35C09C3F5D00CE4351405C60F0EFFC0B35C0618E0B7E05475140A39880354E0A35C0D633D39C494A5140A801FF8B480935C084236142994D514015804C59F00835C001020000002000000084236142994D514015804C59F00835C0D7A827DAE8505140CD422A8A480935C0B15FF6EC2C545140061D6C2E4E0A35C079B7626064575140E6E98EE0FC0B35C0911F021A8E5A514088840F3B500E35C063076AFFA85D51400EC86AD8431135C051DE2FF6B3605140938F1D53D31435C0C613E9E3AD6351403CB6A445FA1835C025172BAE9566514022177D4AB41D35C0D5578B3A6A6951406E8D23FCFC2235C03B459F6E2A6C514037F414F5CF2835C0BE4EFC2FD56E51409F26CECF282F35C0C3E3376469715140C6FFCB26033635C0B273E7F0E5735140CA5A8B945A3D35C0F06DA0BB49765140CC1289B32A4535C0E341F8A993785140ED02421E6F4D35C0F35E84A1C27A51404B06336F235635C08134DA87D57C514002F8D840435F35C0F9318F42CB7E514037B3B02DCA6835C0BDC638B7A2805140091337D0B37235C033626CCB5A82514092F2E8C2FB7C35C0C473BF64F2835140F72C43A09D8735C0D56AC76868855140569DC202959235C0CCB619BDBB865140CC1EE484DD9D35C00DC74B47EB8751407D8C24C172A935C0010BF3ECF588514086C1005250B535C00EF2A493DA8951400799F5D171C135C097EBF620988A51401CEE7FDBD2CD35C003677E7A2D8B5140E99B1C096FDA35C0BCD3D085998B51408F7D48F541E735C021A18328DB8B5140276E803A47F435C0A03E2C48F18B5140D44841737A0136C0010200000020000000A03E2C48F18B5140D44841737A0136C05BA9FA28DB8B51409DC51375AD0E36C0A9159D87998B5140D513918AB21B36C0B345667E2D8B5140DB4ED84D852836C09EFBA827988A514009920859213536C094F9B79DDA895140B4F84046824136C0BB01E6FAF58851403A9EA0AFA34D36C03FD68559EB875140F09D462F815936C04339EAD3BB8651403613525F166536C0F5EC6584688551406219E2D95E7036C076B34B85F2835140CCCB1539567B36C0F54EEEF05A825140CD450C17F88536C09681A0E1A2805140C6A2E40D409036C0820DB571CB7E51400AFEBDB7299A36C0DFB47EBBD57C5140F572B7AEB0A336C0DA3950D9C27A5140E01CF08CD0AC36C0975E7CE593785140241787EC84B536C03EE555FA497651401D7D9B67C9BD36C0FB8F2F32E6735140216A4C9899C536C0F1205CA7697151408FF9B818F1CC36C04B5A2E74D56E5140BE460083CBD336C030FEF8B22A6C5140046D417124DA36C0C9CE0E7E6A695140C2879B7DF7DF36C03C8EC2EF956651404BB22D4240E536C0B4FE6622AE635140FC071759FAE936C058E24E30B46051402FA4765C21EE36C050FBCC33A95D51403EA26BE6B0F136C0C20B34478E5A51407D1D1591A4F436C0DAD5D684645751404F3192F6F7F636C0BC1B08072D54514006F901B1A6F836C0939F1AE8E85051400090835AACF936C084236142994D51409411368D04FA36C001020000002000000084236142994D51409411368D04FA36C0319E9AAA494A514053185E5CACF936C058E7CB9705475140F6D42CB8A6F836C08F8F5F24CE43514017442406F8F636C07727C06AA44051404162C6ABA4F436C0A73F5885893D5140122C950EB1F136C0B768928E7E3A51401A9E129421EE36C04333D9A084375140F4B4C0A1FAE936C0E32F97D69C345140306D219D40E536C035EF364AC83151406BC3B6EBF7DF36C0CF012316082F51402EB402F324DA36C04BF8C5545D2C5140153C8718CCD336C045638A20C9295140BC57C6C1F1CC36C056D3DA934C275140AC0342549AC536C018D921C9E8245140833C7C35CABD36C02505CADA9E225140D2FEF6CA85B536C015E83DE36F2051403547347AD1AC36C08712E8FC5C1E51403912B6A8B1A336C011153342671C51407A5CFEBB2A9A36C04B8089CD8F1A514086228F19419036C0D5E455B9D7185140FA60EA26F98536C044D302204017514066149249577B36C033DCFA1BCA155140643908E75F7036C03C90A8C77614514086CCCE64176536C0FC7F763D4713514063CA6728825936C0073CCF973C125140912F5597A44D36C0FC541DF157115140A4F81817834136C0735BCB639A1051402D22350D223536C005E0430A05105140CAA82BDF852836C04E73F1FE980F51400E897EF2B21B36C0E7A53E5C570F514088BFAFACAD0E36C06808963C410F5140D44841737A0136C00102000000200000005EDC783D490C5140F026556187053640A271AA5C5F0C5140B8A32763BA123640550508FEA00C5140F5F1A478BF1F36404CD53E070D0D5140F92CEC3B922C3640621FFC5DA20D514026701C472E3936406B21EDE75F0E5140CED654348F4536404319BF8A440F5140567CB49DB0513640C0441F2C4F1051400A7C5A1D8E5D3640BAE1BAB17E11514050F1654D236936400A2E3F01D21251407CF7F5C76B7436408767590048145140E2A92927637F364009CCB694DF155140EB232005058A3640699904A497175140E080F8FB4C9436407E0DF0136F19514023DCD1A5369E36401E6626CA641B51401051CB9CBDA7364024E154AC771D5140FAFA037BDDB0364068BC28A0A61F514040F59ADA91B93640BF354F8BF02151403C5BAF55D6C13640048B7553542451403F486086A6C936400EFA48DED0265140ABD7CC06FED03640B4C0761165295140D7241471D8D73640CF1CACD20F2C5140234B555F31DE3640354C9607D02E5140DE65AF6B04E43640C18CE295A4315140669041304DE93640491C3E638C34514018E62A4707EE3640A63856558637514049828A4A2EF23640AF1FD851913A514056807FD4BDF536403C0F713EAC3D514098FB287FB1F836402545CE00D6405140650FA6E404FB364043FF9C7E0D4451401ED7159FB3FC36406D7B8A9D514751401A6E9748B9FD364079F74343A14A5140AEEF497B11FE364001020000002000000079F74343A14A5140AEEF497B11FE3640CE7C0ADBF04D5140F82C6C4AB9FD3640A833D9ED34515140BB522AA6B3FC36406E8B45616C545140E08507F404FB364086F3E41A965751403CEB8699B1F8364058DB4C00B15A5140B4A72BFCBDF5364047B212F7BB5D514035E078812EF23640BCE7CBE4B560514087B9F18E07EE36401AEB0DAF9D6351409F58198A4DE93640CA2B6E3B7266514053E272D804E436403019826F32695140877B81DF31DE3640B322DF30DD6B51402949C804D9D73640B8B71A65716E5140FD6FCAADFED03640A747CAF1ED705140F9140B40A7C93640E64183BC51735140F85C0D21D7C13640D915DBAA9B755140D66C54B692B93640E83267A2CA7751407B696365DEB036407608BD88DD795140BE77BD93BEA73640EE057243D37B514091BCE5A6379E3640B29A1BB8AA7D5140BF5C5F044E94364029364FCC627F5140327DAD11068A3640BA47A265FA805140D0425334647F3640CC3EAA69708251406ED2D3D16C743640C28AFCBDC3835140F850B24F24693640049B2E48F384514047E371138F5D3640F6DED5EDFD8551403FAE9582B151364003C68794E2865140BCD6A002904536408CBFD921A0875140A88116F92E393640F93A617B35885140DBD379CB922C3640B1A7B386A188514033F24DDFBF1F364018756629E38851409D01169ABA12364097120F49F9885140F02655618705364001020000002000000097120F49F9885140F026556187053640B309DC29E388514028AA825F54F83540B94C7A88A1885140F25B054A4FEB35401DE83C7F35885140E720BE867CDE35405BE87628A0875140BADD8D7BE0D13540EF597B9EE28651400E77558E7FC5354051499DFBFD8551408AD1F5245EB93540FFC22F5AF3845140D3D14FA580AD35406FD385D4C38351408D5C4475EBA135402287F284708251406056B4FAA29635408EEAC885FA805140F7A3809BAB8B35402D0A5CF1627F5140F5298ABD098135407CF2FEE1AA7D514000CDB1C6C1763540F5AF0472D37B5140B971D81CD86C3540124FC0BBDD795140D0FCDE255163354050DC84D9CA775140E252A647315A35402764A5E59B755140A0580FE87C51354012F374FA51735140A8F2FA6C384935408B954632EE705140A1054A3C684135400F586DA7716E51403576DDBB103A354016473C74DD6B514005299651363335401D6F06B332695140BD025563DD2C35409DDC1E7E7266514002E8FA560A273540119CD8EF9D6351407ABD6892C1213540F3B98622B6605140C8677F7B071D3540BF427C30BC5D514093CB1F78E0183540EF420C34B15A514083CD2AEE50153540FCC6894796575140445281435D12354063DB47856C545140743E04DE09103540A08C990735515140BB7694235B0E354029E7D1E8F04D5140C2DF127A550D354079F74343A14A51402F5E6047FD0C354001020000002000000079F74343A14A51402F5E6047FD0C354026727DAB514751406F573878550D35404DBBAE980D445140CB9A691C5B0E354086634225D6405140AE2B72CE091035406CFBA26BAC3D5140830DD0285D1235409C133B86913A5140B44301C650153540AC3C758F86375140ACD18340E01835403907BCA18C345140CDBAD532071D3540DA037AD7A431514093027537C12135402AC3194BD02E514059ACDFE809273540C4D50517102C514092BB93E1DC2C354042CCA85565295140AF330FBC353335403A376D21D12651400B18D012103A35404BA7BD94542451401A6C5480674135400DAD04CAF021514041331A9F374935401AD9ACDBA61F5140F0709F097C5135400DBC20E4771D51408E28625A305A35407EE6CAFD641B51408C5DE02B5063354006E915436F1951404D139818D76C354042546CCE971751403E4D07BBC0763540CAB838BADF155140CA0EACAD0881354039A7E520481451405F5B048BAA8B354029B0DD1CD212514062368EEDA196354033648BC87E1151403BA3C76FEAA13540F153593E4F1051405EA52EAC7FAD3540FC0FB298440F51403240413D5DB93540F12800F25F0E514020777DBD7EC53540682FAE64A20D5140984D61C7DFD13540FAB3260B0D0D5140FAC66AF57BDE35404347D4FFA00C5140B6E617E24EEB3540DC79215D5F0C51403CB0E62754F835405EDC783D490C5140F026556187053640010200000020000000D0CC4A28F71233404605F3FC0EFB3540DE2111A54F1333401282C5FE41083640A570872A561433404BD042144715364083B0624F061633404F0B8AD719223640D8D857AA5B183340794EBAE2B52E364007E11BD2511B334021B5F2CF163B364064C0635DE41E3340AC5A523938473640566EE4E20E233340605AF8B81553364042E252F9CC273340A6CF03E9AA5E3640821364371A2D3340CED59363F369364078F9CC33F23233403888C7C2EA7436407C8B4285503933403D02BEA08C7F3640FCC079C230403340365F9697D4893640509127828E47334076BA6F41BE933640CFF3005B654F3340632F6938459D3640E8DFBAE3B057334050D9A11665A63640F64C0AB36C60334092D3387619AF36405132A45F946933408B394DF15DB7364068873D80237333409126FE212EBF36408A438BAB157D334001B66AA285C63640295E4278668733402A03B20C60CD364092CE177D119233407929F3FAB8D336402C8CC050129D334030444D078CD93640598EF18964A83340BC6EDFCBD4DE364079CC5FBF03B433406EC4C8E28EE33640EC3DC087EBBF33409F6028E6B5E7364013DAC77917CC3340A85E1D7045EB364044982B2C83D83340EED9C61A39EE3640EC6FA0352AE53340BBED43808CF036406358DB2C08F2334074B5B33A3BF23640084991A818FF3340704C35E440F336403E39773F570C344004CEE71699F336400102000000200000003E39773F570C344004CEE71699F336408A4E919E95193440C7D40FE640F33640F829CCE9A52634406B91DE413BF236400E897DB7833334408800D68F8CF036406F29FB9D2A403440B71E783539EE3640BAC89A33964C34407EE8469845EB36407024B20EC25834408E5AC41DB6E7364045FA96C5A96434405F71722B8FE33640BE079FEE48703440A429D326D5DE36407E0A20209B7B3440D67F68758CD936401DC06FF09B8634409970B47CB9D3364024E6E3F54691344084F838A260CD36403A3AD2C6979B34402814784B86C63640F97990F989A5344018C0F3DD2EBF3640F062742419AF3440F1F82DBF5EB73640BFB2D3DD40B8344046BBA8541AAF3640F52604BCFCC03440A403E60366A63640337D5B5548C93440AACE6732469D36400B732F401FD13440ED18B045BF9336401FC6D5127DD83440F8DE40A3D5893640FF33A4635DDF34406C1D9CB08D7F3640407AF0C8BBE53440D8D043D3EB743640815610D993EB3440DBF5B970F46936405C86592AE1F03440FB8880EEAB5E364064C721539FF53440D88619B21653364035D7BEE9C9F9344004EC062139473640637386845CFD344012B5CAA0173B36408259CEB952003540A2DEE696B62E36403847EC1FA80235403F65DD681A2236401AFA354D580435407C45307C47153640B72F01D85E053540FA7B613642083640ADA5A356B70535404605F3FC0EFB3540010200000020000000ADA5A356B70535404605F3FC0EFB35402682D7D95E053540818820FBDBED3540368E505458043540483AA3E5D6E03540C6FB5A2FA80235403DFF5B2204D43540C1FC42D45200354013BC2B1768C7354011C354AC5CFD34406455F32907BB35409980DC20CAF93440E0AF93C0E5AE35404E67269B9FF5344025B0ED4008A3354012A97E84E1F03440EA3AE21073973540DC77314694EB3440B63452962A8C354089058B49BCE5344049821E37338135400584D7F75DDF34404B08285991763540442563BA7DD8344056AB4F62496C35402E1B7AFA1FD134400F5076B85F623540A397682149C9344026DB7CC1D858354094CC7A98FDC034403C3144E3B84F3540F0EBFCC841B83440F636AD83044735409C273B1C1AAF3440FAD09808C03E354080B181FB8AA53440FBE3E7D7EF36354090BB1CD0989B34408F547B57982F3540AC775803489134405B0734EDBD283540C41781FE9C86344013E1F2FE64223540C8CDE22A9C7B344058C698F2911C354099CBC9F149703440CC9B062E491735401F4382BCAA6434401E461D178F123540516658F4C2583440E9A9BD13680E354010679802974C3440DDABC889D80A354045778E502B4034409A301FDFE4073540E6C8864784333440CA1CA27991053540D48DCD50A6263440115532BFE2033540F8F7AED59519344018BEB015DD0235403E39773F570C3440853CFEE2840235400102000000200000003E39773F570C3440853CFEE284023540EF235DE018FF33403EFFDB13DD0235408948229508F233407BD91DB8E20335406FE970C72AE5334056A6406A910535400E49F3E083D83340FA40C1C4E4073540C6A9534B18CC33407E841C62D80A3540054E3C70ECBF3340054CCFDC670E3540387857B904B43340A87256CF8E123540BB6A4F9065A8334097D32ED4481735400268CE5E139D3340DC49D585911C35406AB27E8E12923340A1B0C67E642235405C8C0A89678733400DE37F59BD28354042381CB8167D334032BC7DB0972F354083F85D85247333403A173D1EEF3635408D0F7A5A956933403ECF3A3DBF3E3540C2BF1AA16D6033405DBFF3A7034735408B4BEAC2B1573340BBC2E4F8B74F354046F59229664F334074B48ACAD75835406EFFBE3E8F473340A96F62B75E6235405EAC186C314033407ACFE859486C3540813E4A1B5139334004AF9A4C9076354039F8FDB5F232334067E9F42932813540F81BDEA51A2D3340C859748C298C354020EC9454CD2733403EDB950E7297354019ABCC2B0F233340EF48D64A07A335404B9B2F95E41E3340F77DB2DBE4AE35401EFF67FA511B33407755A75B06BB3540F71820C55B18334091AA316567C73540412B025F061633405E58CE9203D435406378B83156143340FC39FA7ED6E03540C642EDA64F133340992A32C4DBED3540D0CC4A28F71233404605F3FC0EFB3540010200000020000000D0CC4A28F712334070764019B0FB35C0DE2111A54F133340A6F96D177DEE35C0A570872A561433406DABF00178E135C083B0624F061633406670A93EA5D435C0D8D857AA5B1833403A2D793309C835C007E11BD2511B334090C64046A8BB35C064C0635DE41E33400A21E1DC86AF35C0566EE4E20E23334053213B5DA9A335C042E252F9CC2733400EAC2F2D149835C0821364371A2D3340E4A59FB2CB8C35C078F9CC33F23233407CF36B53D48135C07C8B42855039334077797575327735C0FCC079C230403340801C9D7EEA6C35C0509127828E4733403BC1C3D4006335C0CFF3005B654F3340504CCADD795935C0E8DFBAE3B057334064A291FF595035C0F64C0AB36C60334021A8FA9FA54735C05132A45F946933402842E624613F35C068873D8023733340215535F4903735C08A438BAB157D3340B5C5C873393035C0295E427866873340877881095F2935C092CE177D119233403F52401B062335C02C8CC050129D33408237E60E331D35C0598EF18964A83340FA0C544AEA1735C079CC5FBF03B4334049B76A33301335C0EC3DC087EBBF3340141B0B30090F35C013DAC77917CC3340091D16A6790B35C044982B2C83D83340C4A16CFB850835C0EC6FA0352AE53340F68DEF95320635C06358DB2C08F233403FC67FDB830435C0084991A818FF3340462FFE317E0335C03E39773F570C3440B0AD4BFF250335C00102000000200000003E39773F570C3440B0AD4BFF250335C08A4E919E95193440677029307E0335C0F829CCE9A5263440A04A6BD4830435C00E897DB78333344083178E86320635C06F29FB9D2A40344025B20EE1850835C0BAC89A33964C3440A8F5697E790B35C07024B20EC25834402DBD1CF9080F35C045FA96C5A9643440D7E3A3EB2F1335C0BE079FEE48703440C0447CF0E91735C07E0A20209B7B344009BB22A2321D35C01DC06FF09B863440D221149B052335C024E6E3F5469134403954CD755E2935C03A3AD2C6979B3440602DCBCC383035C0F97990F989A5344066888A3A903735C0F062742419AF344068408859603F35C0BFB2D3DD40B834408A3041C4A44735C0F52604BCFCC03440E5333215595035C0337D5B5548C93440A025D8E6785935C00B732F401FD13440D3E0AFD3FF6235C01FC6D5127DD83440A3403676E96C35C0FF33A4635DDF34402E20E868317735C0407AF0C8BBE53440925A4246D38135C0815610D993EB3440F2CAC1A8CA8C35C05C86592AE1F034406A4CE32A139835C064C721539FF5344019BA2367A8A335C035D7BEE9C9F9344022EFFFF785AF35C0637386845CFD3440A1C6F477A7BB35C08259CEB952003540B81B7F8108C835C03847EC1FA802354087C91BAFA4D435C01AFA354D580435402BAB479B77E135C0B72F01D85E053540C19B7FE07CEE35C0ADA5A356B705354070764019B0FB35C0010200000020000000ADA5A356B705354070764019B0FB35C02682D7D95E05354037F3121BE30836C0368E50545804354071419030E81536C0C6FB5A2FA8023540777CD7F3BA2236C0C1FC42D452003540A5BF07FF562F36C011C354AC5CFD3440542640ECB73B36C09980DC20CAF93440D2CB9F55D94736C04E67269B9FF534408DCB45D5B65336C012A97E84E1F03440D04051054C5F36C0DC77314694EB3440FC46E17F946A36C089058B49BCE5344067F914DF8B7536C00584D7F75DDF344069730BBD2D8036C0442563BA7DD8344062D0E3B3758A36C02E1B7AFA1FD13440A52BBD5D5F9436C0A397682149C9344090A0B654E69D36C094CC7A98FDC034407C4AEF3206A736C0F0EBFCC841B83440C1448692BAAF36C09C273B1C1AAF3440B6AA9A0DFFB736C080B181FB8AA53440BF974B3ECFBF36C090BB1CD0989B34402B27B8BE26C736C0AC775803489134405B74FF2801CE36C0C41781FE9C863440A19A40175AD436C0C8CDE22A9C7B34405EB59A232DDA36C099CBC9F149703440E6DF2CE875DF36C01F4382BCAA643440983516FF2FE436C0516658F4C2583440CDD1750257E836C010679802974C3440D9CF6A8CE6EB36C045778E502B403440194B1437DAEE36C0E6C8864784333440E95E919C2DF136C0D48DCD50A6263440A3260157DCF236C0F8F7AED5951934409ABD8200E2F336C03E39773F570C3440303F35333AF436C00102000000200000003E39773F570C3440303F35333AF436C0EF235DE018FF3340EF455D02E2F336C08948229508F2334092022C5EDCF236C06FE970C72AE53340B17123AC2DF136C00E49F3E083D83340DD8FC551DAEE36C0C6A9534B18CC3340AE5994B4E6EB36C0054E3C70ECBF3340B6CB113A57E836C0387857B904B4334090E2BF4730E436C0BB6A4F9065A83340CA9A204376DF36C00268CE5E139D334003F1B5912DDA36C06AB27E8E12923340CCE101995AD436C05C8C0A8967873340AF6986BE01CE36C042381CB8167D33405585C56727C736C083F85D8524733340493141FACFBF36C08D0F7A5A956933401D6A7BDBFFB736C0C2BF1AA16D603340702CF670BBAF36C08B4BEAC2B1573340D074332007A736C046F59229664F3340D63FB54EE79D36C06EFFBE3E8F473340148AFD61609436C05EAC186C3140334022508EBF768A36C0813E4A1B51393340968EE9CC2E8036C039F8FDB5F2323340034291EF8C7536C0F81BDEA51A2D33400067078D956A36C020EC9454CD27334024FACD0A4D5F36C019ABCC2B0F233340FFF766CEB75336C04B9B2F95E41E33402E5D543DDA4736C01EFF67FA511B3340402618BDB83B36C0F71820C55B183340C94F34B3572F36C0412B025F0616334068D62A85BB2236C06378B83156143340AAB67D98E81536C0C642EDA64F13334024EDAE52E30836C0D0CC4A28F712334070764019B0FB35C00102000000200000000AB1E8ADAC0E35C0BE37972C38F135C0F15B2231540E35C0F4BAC42A05E435C0350DACAB4D0D35C0BB6C471500D735C057CDD0869D0B35C0B63100522DCA35C002A5DB2B480935C08AEECF4691BD35C0D39C1704520635C0DE87975930B135C076BDCF78BF0235C05AE237F00EA535C0810F4FF394FE34C0A3E29170319935C0989BE0DCD6F934C05D6D86409C8D35C0586ACF9E89F434C03467F6C5538235C0658466A2B1EE34C0CBB4C2665C7735C05EF2F05053E834C0C73ACC88BA6C35C0DEBCB91373E134C0CEDDF391726235C08AEC0B5415DA34C08D821AE8885835C00E8A327B3ED234C0A00D21F1014F35C0F29D78F2F2C934C0B463E812E24535C0E030292337C134C0716951B32D3D35C0854B8F760FB834C076033D38E93435C076F6F55580AE34C070168C07192D35C0493AA82A8EA434C003871F87C12535C0B91FF15D3D9A34C0D739D81CE71E35C053AF1B59928F34C08F13972E8E1835C0B5F17285918434C0D4F83C22BB1235C07DEF414C3F7934C048CEAA5D720D35C05DB1D316A06D34C09778C146B80835C0EA3F734EB86134C065DC6143910435C0CAA36B5C8C5534C059DE6CB9010135C092E507AA204934C01663C30E0EFE34C0EE0D93A0793C34C0464F46A9BAFB34C0742558A99B2F34C09087D6EE0BFA34C0CE34A22D8B2234C094F0544506F934C09B44BC964C1534C0006FA212AEF834C00102000000200000009B44BC964C1534C0006FA212AEF834C0502FA2370E0834C040687A4306F934C0E95367ECFDFA33C09BABABE70BFA34C0CFF4B51E20EE33C07E3CB499BAFB34C06754383879E133C0501E12F40DFE34C027B598A20DD533C083544391010135C06D5981C7E1C833C077E2C50B910435C099839C10FABC33C0A2CB17FEB70835C0187694E75AB133C06313B702720D35C0587313B608A633C02FBD21B4BA1235C0B9BDC3E5079B33C06ACCD5AC8D1835C0BD974FE05C9033C07F445187E61E35C0A743610F0C8633C0DB2812DEC02535C0E403A3DC197C33C0E77C964B182D35C0EA1ABFB18A7233C011445C6AE83435C01FCB5FF8626933C0C081E1D42C3D35C0E1562F1AA76033C06039A425E14535C0A700D8805B5833C05A6E22F7004F35C0CF0A0496845033C01B24DAE3875835C0BFB75DC3264933C00B5E4986716235C0DE498F72464233C09C1FEE78B96C35C09A03430DE83B33C0296C46565B7735C0592723FD0F3633C02D47D0B8528235C081F7D9ABC23033C00BB4093B9B8D35C079B61183042C33C02EB67077309935C0A8A674ECD92733C0025183080EA535C0730AAD51472433C0F287BF882FB135C05824651C512133C0625EA39290BD35C09E3647B6FB1E33C0C9D7ACC02CCA35C0BC83FD884B1D33C088F759ADFFD635C01F4E32FE441C33C00BC128F304E435C02DD88F7FEC1B33C0BE37972C38F135C00102000000200000002DD88F7FEC1B33C0BE37972C38F135C0B4FB5BFC441C33C07F18BC2D6BFE35C0A4EFE2814B1D33C0CE8DA242700B36C01B82D8A6FB1E33C0BB8A6805431836C01581F001512133C04F022C10DF2436C0C5BADE29472433C0A0E70AFD3F3136C03EFD56B5D92733C0B42D2366613D36C085160D3B042C33C0A3C792E53E4936C0C4D4B451C23033C071A87715D45436C0FA0502900F3633C037C3EF8F1C6036C04A78A88CE73B33C0FE0A19EF136B36C0D5F95BDE454233C0D47211CDB57536C09258D01B264933C0C8EDF6C3FD7F36C0AC62B9DB835033C0EC6EE76DE78936C037E6CAB45A5833C04BE900656E9336C046B1B83DA66033C0F54F61438E9C36C0ED91360D626933C0F79526A342A536C04156F8B9897233C060AE6E1E87AD36C05DCCB1DA187C33C03F8C574F57B536C04EC216060B8633C0A422FFCFAEBC36C02E06DBD25B9033C09E64833A89C336C01966B2D7069B33C035450229E2C936C016B050AB07A633C080B79935B5CF36C045B269E459B133C089AE67FAFDD436C0BB3AB119F9BC33C0611D8A11B8D936C08D17DBE1E0C833C014F71E15DFDD36C0C7169BD30CD533C0B22E449F6EE136C09206A58578E133C046B7174A62E436C0F4B4AC8E1FEE33C0E583B7AFB5E636C00AF06585FDFA33C09B87416A64E836C0DE8584000E0834C071B5D3136AE936C09B44BC964C1534C07E008C46C2E936C00102000000200000009B44BC964C1534C07E008C46C2E936C0EE59D6F58A2234C0C63DAE156AE936C0553511419B2F34C089636C7164E836C06F94C20E793C34C0AB9649BFB5E636C0CF3440F51F4934C009FCC86462E436C009D4DF8A8B5534C086B86DC76EE136C0D82FF765B76134C0FEF0BA4CDFDD36C09E05DC1C9F6D34C059CA335AB8D936C01F13E4453E7934C06F695B55FED436C0D7156577908434C029F3B4A3B5CF36C070CBB447918F34C0628CC3AAE2C936C081F1284D3C9A34C0F6590AD089C336C09745171E8DA434C0CF800C79AFBC36C05385D5507FAE34C0C9254D0B58B536C04D6EB97B0EB834C0C76D4FEC87AD36C018BE183536C134C0A87D968143A536C04E324913F2C934C0497AA5308F9C36C09088A0AC3DD234C09088FF5E6F9336C0707E749714DA34C05CCD2772E88936C07FD11A6A72E134C08C6DA1CFFE7F36C0593FE9BA52E834C0018EEFDCB67536C09D853520B1EE34C09A5395FF146B36C0DE61553089F434C03DE3159D1D6036C0BD919E81D6F934C0C661F41AD55436C0BED266AA94FE34C016F4B3DE3F4936C08FE20341BF0235C00DBFD74D623D36C0BC7ECBDB510635C08EE7E2CD403136C0E6641311480935C0779258C4DF2436C0995231779D0B35C0AAE4BB96431836C074057BA44D0D35C0070390AA700B36C0183B462F540E35C06D1258656BFE35C00AB1E8ADAC0E35C0BE37972C38F135C0010200000020000000D176CE812B0435C04A05F3FC0EFB3540C6210805D30335C01682C5FE41083640FCD2917FCC0235C04ED04214471536401793B65A1C0135C0520B8AD719223640C96AC1FFC6FE34C07C4EBAE2B52E36409A62FDD7D0FB34C024B5F2CF163B36404483B54C3EF834C0AF5A52393847364048D534C713F434C0635AF8B8155336405F61C6B055EF34C0A9CF03E9AA5E36401F30B57208EA34C0D2D59363F3693640254A4C7630E434C03B88C7C2EA7436402CB8D624D2DD34C04102BEA08C7F3640A5829FE7F1D634C03A5F9697D489364059B2F12794CF34C079BA6F41BE933640CF4F184FBDC734C0662F6938459D3640B9635EC671BF34C054D9A11665A63640A8F60EF7B5B634C096D3387619AF36404C11754A8EAD34C08E394DF15DB736403DBCDB29FFA334C09526FE212EBF364010008EFE0C9A34C004B66AA285C6364079E5D631BC8F34C02D03B20C60CD36401375012D118534C07D29F3FAB8D3364076B75859107A34C034444D078CD9364044B52720BE6E34C0C06EDFCBD4DE36402477B9EA1E6334C071C4C8E28EE33640B2055922375734C0A36028E6B5E73640926951300B4B34C0AC5E1D7045EB36405AABED7D9F3E34C0F2D9C61A39EE3640B5D37874F83134C0BFED43808CF036403BEB3D7D1A2534C078B5B33A3BF2364096FA87010A1834C0744C35E440F33640630AA26ACB0A34C008CEE71699F33640010200000020000000630AA26ACB0A34C008CEE71699F3364017F5870B8DFD33C0CAD40FE640F33640B1194DC07CF033C06F91DE413BF236408FBA9BF29EE333C08C00D68F8CF036402F1A1E0CF8D633C0BA1E783539EE3640EE7A7E768CCA33C082E8469845EB36402D1F679B60BE33C0915AC41DB6E73640604982E478B233C06271722B8FE33640DF3B7ABBD9A633C0A729D326D5DE36401839F989879B33C0D97F68758CD936408083A9B9869033C09C70B47CB9D336407D5D35B4DB8533C087F838A260CD3640670947E38A7B33C02B14784B86C63640ABC988B0987133C01CC0F3DD2EBF3640B1E0A485096833C0F5F82DBF5EB73640E69045CCE15E33C049BBA8541AAF3640A91C15EE255633C0A803E60366A6364067C6BD54DA4D33C0AECE6732469D36408FD0E969034633C0F118B045BF9336407F7D4397A53E33C0FCDE40A3D58936409E0F7546C53733C0701D9CB08D7F36405AC928E1663133C0DBD043D3EB74364019ED08D18E2B33C0DFF5B970F469364041BDBF7F412633C0FF8880EEAB5E3640327CF756832133C0DC8619B216533640686C5AC0581D33C008EC0621394736403BD09225C61933C016B5CAA0173B364011EA4AF0CF1633C0A6DEE696B62E36405EFC2C8A7A1433C04365DD681A2236408449E35CCA1233C08045307C47153640DF1318D2C31133C0FD7B613642083640ED9D75536B1133C04A05F3FC0EFB3540010200000020000000ED9D75536B1133C04A05F3FC0EFB354074C141D0C31133C0858820FBDBED354064B5C855CA1233C04C3AA3E5D6E03540D447BE7A7A1433C041FF5B2204D43540D646D6D5CF1633C017BC2B1768C735408580C4FDC51933C06855F32907BB354005C33C89581D33C0E4AF93C0E5AE35404CDCF20E832133C029B0ED4008A33540849A9A25412633C0ED3AE21073973540BBCBE7638E2B33C0BA3452962A8C35400A3E8E60663133C04D821E373381354095BF41B2C43733C04F08285991763540521EB6EFA43E33C05AAB4F62496C35406C289FAF024633C0135076B85F623540FEABB088D94D33C029DB7CC1D858354006779E11255633C0403144E3B84F3540AE571CE1E05E33C0FA36AD8304473540021CDE8D086833C0FED09808C03E35401D9297AE977133C0FEE3E7D7EF3635400E88FCD9897B33C092547B57982F3540EECBC0A6DA8533C05F0734EDBD283540D22B98AB859033C017E1F2FE64223540D675367F869B33C05CC698F2911C354005784FB8D8A633C0D09B062E49173540830097ED77B233C022461D178F1235404DDDC0B55FBE33C0EDA9BD13680E35408EDC80A78BCA33C0E0ABC889D80A354059CC8A59F7D633C09E301FDFE4073540BC7A92629EE333C0CD1CA27991053540D1B54B597CF033C0145532BFE2033540AC4B6AD48CFD33C01CBEB015DD023540630AA26ACB0A34C0883CFEE284023540010200000020000000630AA26ACB0A34C0883CFEE284023540B61FBCC9091834C042FFDB13DD0235401CFBF6141A2534C07FD91DB8E20335402F5AA8E2F73134C059A6406A9105354097FA25C99E3E34C0FD40C1C4E4073540DE99C55E0A4B34C082841C62D80A3540A0F5DC39365734C0084CCFDC670E354065CBC1F01D6334C0AB7256CF8E123540DFD8C919BD6E34C09BD32ED44817354098DB4A4B0F7A34C0DF49D585911C354030919A1B108534C0A5B0C67E6422354041B70E21BB8F34C010E37F59BD283540580BFDF10B9A34C036BC7DB0972F35401A4BBB24FEA334C03D173D1EEF36354014349F4F8DAD34C041CF3A3DBF3E3540E083FE08B5B634C060BFF3A70347354016F82EE770BF34C0BFC2E4F8B74F3540574E8680BCC734C078B48ACAD758354030445A6B93CF34C0AC6F62B75E6235403F97003EF1D634C07ECFE859486C35402005CF8ED1DD34C007AF9A4C90763540644B1BF42FE434C06AE9F42932813540A5273B0408EA34C0CB59748C298C35407D57845555EF34C041DB950E7297354085984C7E13F434C0F248D64A07A3354056A8E9143EF834C0FB7DB2DBE4AE35407C44B1AFD0FB34C07A55A75B06BB3540A72AF9E4C6FE34C095AA316567C735406018174B1C0135C06258CE9203D435403BCB6078CC0235C0FF39FA7ED6E03540D8002C03D30335C09C2A32C4DBED3540D176CE812B0435C04A05F3FC0EFB354001020000002000000069C7574C968851C076B57825870536402732262D808851C042324B27BA123640749EC88B3E8851C07A80C83CBF1F36407DCE9182D28751C07EBB0F00922C36406784D42B3D8751C0ACFE3F0B2E3936405C82E3A17F8651C0576578F88E453640868A11FF9A8551C0DB0AD861B0513640075FB15D908451C0930A7EE18D5D36400DC215D8608351C0D97F891123693640BD7591880D8251C0FE85198C6B7436403E3C7789978051C06B384DEB627F3640BED719F5FF7E51C06DB243C9048A3640600ACCE5477D51C0690F1CC04C9436404996E075707B51C0A96AF569369E3640A93DAABF7A7951C096DFEE60BDA73640A3C27BDD677751C08089273FDDB0364061E7A7E9387551C0C583BE9E91B93640086E81FEEE7251C0BEE9D219D6C13640C4185B368B7051C0C1D6834AA6C93640B9A987AB0E6E51C03166F0CAFDD0364013E359787A6B51C05DB33735D8D73640FA8624B7CF6851C0A5D9782331DE364094573A820F6651C063F4D22F04E436400817EEF33A6351C0EC1E65F44CE936407E879226536051C09D744E0B07EE3640216B7A34595D51C0CF10AE0E2EF236401984F8374E5A51C0DB0EA398BDF536408D945F4B335751C01E8A4C43B1F83640A45E0289095451C0EE9DC9A804FB364084A4330BD25051C0A4653963B3FC36405C2846EC8D4D51C0A0FCBA0CB9FD36404EAC8C463E4A51C0347E6D3F11FE36400102000000200000004EAC8C463E4A51C0347E6D3F11FE3640FB26C6AEEE4651C0F684950EB9FD36402370F79BAA4351C09B41646AB3FC364059188B28734051C0B4B05BB804FB364043B0EB6E493D51C0E3CEFD5DB1F8364071C883892E3A51C0AE98CCC0BDF5364082F1BD92233751C0BD0A4A462EF236400DBC04A5293451C08E21F85307EE3640ADB8C2DA413151C0D3D9584F4DE93640FB77624E6D2E51C00230EE9D04E43640958A4E1AAD2B51C0C5203AA531DE36401681F158022951C0B3A8BECAD8D736400FECB5246E2651C05BC4FD73FED036401E5C0698F12351C04B707906A7C93640E1614DCD8D2151C021A9B3E7D6C13640EF8DF5DE431F51C0756B2E7D92B93640DF7069E7141D51C0D4B36B2CDEB03640529B1301021B51C0DA7EED5ABEA73640DA9D5E460C1951C019C9356E379E36401709B5D1341751C0248FC6CB4D9436409D6D81BD7C1551C098CD21D9058A36400F5C2E24E51351C00B81C9FB637F3640FD6426206F1251C007A63F996C7436400519D4CB1B1151C02739061724693640C508A241EC0F51C004379FDA8E5D3640D1C4FA9BE10E51C0309C8C49B1513640C4DD48F5FC0D51C0426550C98F4536403DE4F6673F0D51C0CE8E6CBF2E393640CE686F0EAA0C51C06B156391922C364016FC1C033E0C51C0ACF5B5A4BF1F3640B02E6A60FC0B51C0292CE75EBA1236403291C140E60B51C076B57825870536400102000000200000003291C140E60B51C076B5782587053640169AF45FFC0B51C0B138A62354F83540105756013E0C51C075EA280E4FEB3540ACBB930AAA0C51C071AFE14A7CDE35406EBB59613F0D51C0466CB13FE0D13540D84955EBFC0D51C0940579527FC53540785A338EE10E51C0136019E95DB93540C8E0A02FEC0F51C05560736980AD354058D04AB51B1151C019EB6739EBA13540A51CDE046F1251C0E6E4D7BEA296354038B90704E51351C07D32A45FAB8B35409C9974987C1551C07EB8AD81098135404BB1D1A7341751C0865BD58AC1763540D2F3CB170C1951C04200FCE0D76C3540B55410CE011B51C0558B02EA5063354078C74BB0141D51C06CE1C90B315A3540A23F2BA4431F51C026E732AC7C513540B7B05B8F8D2151C02D811E31384935403C0E8A57F12351C02A946D0068413540B94B63E26D2651C0BE040180103A3540B25C9415022951C08EB7B91536333540AB34CAD6AC2B51C046917827DD2C35402AC7B10B6D2E51C08C761E1B0A273540B807F899413151C0034C8C56C1213540D6E94967293451C052F6A23F071D35400A615459233751C01D5A433CE0183540D860C4552E3A51C00C5C4EB250153540CDDC4642493D51C0CDE0A4075D12354066C88804734051C0FDCC27A20910354027173782AA4351C04405B8E75A0E3540A0BCFEA0EE4651C04B6E363E550D35404EAC8C463E4A51C0B8EC830BFD0C35400102000000200000004EAC8C463E4A51C0B8EC830BFD0C3540A23153DE8D4D51C072AF613C550D35407CE821F1D15051C0AF89A3E05A0E354041408E64095451C08956C692091035405BA82D1E335751C030F146ED5C1235402D9095034E5A51C0AA34A28A501535401D675BFA585D51C038FC5405E0183540909C14E8526051C0DB22DCF7061D3540EF9F56B23A6351C0C783B4FCC02135409BE0B63E0F6651C00BFA5AAE0927354003CECA72CF6851C0D4604CA7DC2C354087D727347A6B51C03C930582353335408D6C63680E6E51C0696C03D90F3A35407AFC12F58A7051C069C7C24667413540B8F6CBBFEE7251C06D7FC06537493540ADCA23AE387551C0906F79D07B513540BCE7AFA5677751C0EB726A21305A35404BBD058C7A7951C0A76410F34F633540C1BABA46707B51C0D81FE8DFD66C3540874F64BB477D51C0A67F6E82C0763540FDEA97CFFF7E51C0375F2075088135408EFCEA68978051C09A997A52AA8B35409EF3F26C0D8251C0F709FAB4A1963540963F45C1608351C06E8B1B37EAA13540D64F774B908451C022F95B737FAD3540CB931EF19A8551C0242E38045DB93540D47AD0977F8651C0A6052D847EC53540607422253D8751C0BE5AB78DDFD13540CDEFA97ED28751C08A0854BB7BDE3540845CFC893E8851C02FEA7FA74EEB3540EB29AF2C808851C0C5DAB7EC53F8354069C7574C968851C076B5782587053640010200000020000000F164C3DCD68D51C0EAE71C55B0FB35C040CA5C17D28D51C01CD2675111F335C003DC9251BA8D51C00F0D473D7EEA35C034E0DBC68F8D51C04135D8B8F8E135C0DA1CAEB2528D51C027E7386482D935C0E9D77F50038D51C046BF86DF1CD135C06D57C7DBA18C51C0165ADFCAC9C835C057E1FA8F2E8C51C0115460C68AC035C0ABBB90A8A98B51C0B849277261B835C0682CFF60138B51C08AD7516E4FB035C08B79BCF46B8A51C0029AFD5A56A835C018E93E9FB38951C0912D48D877A035C005C1FC9BEA8851C0C32E4F86B59835C052476C26118851C0103A3005119135C002C2037A278751C0F1EB08F58B8935C0117739D22D8651C0E6E0F6F5278235C07CAC836A248551C06BB517A8E67A35C043A8587E0B8451C0FA0589ABC97335C062B02E49E38251C0146F68A0D26C35C0DD0A7C06AC8151C0308DD326036635C0A9FDB6F1658051C0D2FCE7DE5C5F35C0D1CE5546117F51C06F5AC368E15835C049C4CE3FAE7D51C088428364925235C0112498193D7C51C096514572714C35C02C34280FBE7A51C019242732804635C0913AF55B317951C08E564644C04035C0487D753B977751C07085C048333B35C049421FE9EF7551C0394DB3DFDA3535C094CF68A03B7451C0694A3CA9B83035C0266BC89C7A7251C07D197945CE2B35C0005BB419AD7051C0EE5687541D2735C01FE5A252D36E51C03D9F8476A72235C00102000000200000001FE5A252D36E51C03D9F8476A72235C0A5096DEEEF6C51C0856FE689731E35C0A5625DBC056B51C0ED31B957871A35C00F9D9434156951C072E6FCDFE21635C0D56533CF1E6751C0128DB122861335C0DE695A04236551C0D325D71F711035C026562A4C226351C0ADB06DD7A30D35C08BD7C31E1D6151C0A62D75491E0B35C0079B47F4135F51C0BC9CED75E00835C0844DD644075D51C0F1FDD65CEA0635C0F29B9088F75A51C0415131FE3B0535C044339737E55851C0AD96FC59D50335C060C00ACAD05651C038CE3870B60235C039F00BB8BA5451C0E2F7E540DF0135C0C16FBB79A35251C0A81304CC4F0135C0DDEB39878B5051C089219311080135C08611A858734E51C08C219311080135C0A78D26665B4C51C0A61304CC4F0135C02C0DD627444A51C0E0F7E540DF0135C0073DD7152E4851C038CE3870B60235C022CA4AA8194651C0AF96FC59D50335C072615157074451C03F5131FE3B0535C0E2AF0B9BF74151C0EFFDD65CEA0635C060629AEBEA3F51C0BA9CED75E00835C0DC251EC1E13D51C0A62D75491E0B35C043A7B793DC3B51C0ADB06DD7A30D35C0849387DBDB3951C0D225D71F711035C09297AE10E03751C0128DB122861335C058604DABE93551C071E6FCDFE21635C0C29A8423F93351C0EF31B957871A35C0C1F374F10E3251C0876FE689731E35C047183F8D2B3051C03D9F8476A72235C001020000002000000047183F8D2B3051C03D9F8476A72235C067A22DC6512E51C0F05687541D2735C043921943842C51C07C197945CE2B35C0D22D793FC32A51C06B4A3CA9B83035C01DBBC2F60E2951C0394DB3DFDA3535C01C806CA4672751C07085C048333B35C0D5C2EC83CD2551C08C564644C04035C03CC9B9D0402451C01C242732804635C056D949C6C12251C097514572714C35C01C3913A0502151C08A428364925235C0932E8C99ED1F51C0725AC368E15835C0BBFF2AEE981E51C0D2FCE7DE5C5F35C089F265D9521D51C0328DD326036635C0024DB3961B1C51C0146F68A0D26C35C023558961F31A51C0FA0589ABC97335C0E8505E75DA1951C06BB517A8E67A35C05286A80DD11851C0E6E0F6F5278235C0623BDE65D71751C0F1EB08F58B8935C012B675B9ED1651C0123A3005119135C0603CE543141651C0C52E4F86B59835C04C14A3404B1551C0952D48D877A035C0D78325EB921451C0FC99FD5A56A835C0FAD0E27EEB1351C088D7516E4FB035C0BA415137551351C0BA49277261B835C00D1CE74FD01251C0115460C68AC035C0F9A51A045D1251C0145ADFCAC9C835C07725628FFB1151C046BF86DF1CD135C08DE0332DAC1151C027E7386482D935C0311D06196F1151C04135D8B8F8E135C062214F8E441151C0110D473D7EEA35C0243385C82C1151C01ED2675111F335C073981E03281151C0EAE71C55B0FB35C001020000002000000073981E03281151C0EAE71C55B0FB35C0263385C82C1151C0C1871E584F0436C064214F8E441151C0CA69976BE20C36C0301D06196F1151C0C48E69EF671536C08CE0332DAC1151C06BF77643DE1D36C07925628FFB1151C083A4A1C7432636C0FBA51A045D1251C0C596CBDB962E36C00D1CE74FD01251C0F9CED6DFD53636C0B8415137551351C0DC4DA533FF3E36C0FAD0E27EEB1351C02E141937114736C0D48325EB921451C0AA22144A0A4F36C04F14A3404B1551C0117A78CCE85636C05E3CE543141651C0291B281EAB5E36C012B675B9ED1651C0AC06059F4F6636C0643BDE65D71751C05E3DF1AED46D36C05486A80DD11851C0F8BFCEAD387536C0E8505E75DA1951C0438F7FFB797C36C023558961F31A51C0F7ABE5F7968336C0024DB3961B1C51C0D716E3028E8A36C08BF265D9521D51C0A0D0597C5D9136C0B9FF2AEE981E51C017DA2BC4039836C0972E8C99ED1F51C0F7333B3A7F9E36C0203913A0502151C002DF693ECEA436C054D949C6C12251C0F7DB9930EFAA36C03CC9B9D0402451C0972BAD70E0B036C0D3C2EC83CD2551C09ECE855EA0B636C01E806CA4672751C0D0C5055A2DBC36C01DBBC2F60E2951C0EA110FC385C136C0D22D793FC32A51C0AFB383F9A7C636C03F921943842C51C0DAAB455D92CB36C064A22DC6512E51C02FFB364E43D036C047183F8D2B3051C06AA2392CB9D436C001020000002000000047183F8D2B3051C06AA2392CB9D436C0C4F374F10E3251C09D378B19EDD836C0C49A8423F93351C001E55F4CD9DC36C058604DABE93551C095AAB7C47DE036C09297AE10E03751C059889282DAE336C0849387DBDB3951C04E7EF085EFE636C045A7B793DC3B51C06F8CD1CEBCE936C0DA251EC1E13D51C0C2B2355D42EC36C05D629AEBEA3F51C044F11C3180EE36C0E0AF0B9BF74151C0F847874A76F036C06E615157074451C0DAB674A924F236C024CA4AA8194651C0E83DE54D8BF336C0053DD7152E4851C029DDD837AAF436C02A0DD627444A51C09A944F6781F536C0A58D26665B4C51C03B6449DC10F636C08611A858734E51C00B4CC69658F636C0DFEB39878B5051C00D4CC69658F636C0BF6FBB79A35251C03C6449DC10F636C03BF00BB8BA5451C09A944F6781F536C060C00ACAD05651C029DDD837AAF436C044339737E55851C0EA3DE54D8BF336C0F59B9088F75A51C0D6B674A924F236C0864DD644075D51C0F647874A76F036C0079B47F4135F51C044F11C3180EE36C08BD7C31E1D6151C0C2B2355D42EC36C023562A4C226351C06F8CD1CEBCE936C0E0695A04236551C04C7EF085EFE636C0D46533CF1E6751C059889282DAE336C00F9D9434156951C095AAB7C47DE036C0A4625DBC056B51C003E55F4CD9DC36C0A3096DEEEF6C51C09F378B19EDD836C01FE5A252D36E51C06AA2392CB9D436C00102000000200000001FE5A252D36E51C06AA2392CB9D436C0005BB419AD7051C02DFB364E43D036C0286BC89C7A7251C0D8AB455D92CB36C094CF68A03B7451C0ADB383F9A7C636C04B421FE9EF7551C0EA110FC385C136C0447D753B977751C0D1C5055A2DBC36C0943AF55B317951C09DCE855EA0B636C02A34280FBE7A51C0972BAD70E0B036C0112498193D7C51C0F9DB9930EFAA36C044C4CE3FAE7D51C004DF693ECEA436C0CDCE5546117F51C0FD333B3A7F9E36C0ABFDB6F1658051C017DA2BC4039836C0DD0A7C06AC8151C0A2D0597C5D9136C062B02E49E38251C0D716E3028E8A36C043A8587E0B8451C0F9ABE5F7968336C07CAC836A248551C0418F7FFB797C36C0107739D22D8651C0FABFCEAD387536C003C2037A278751C05E3DF1AED46D36C054476C26118851C0AE06059F4F6636C007C1FC9BEA8851C02A1B281EAB5E36C016E93E9FB38951C0137A78CCE85636C08E79BCF46B8A51C0A822144A0A4F36C06C2CFF60138B51C02C141937114736C0ABBB90A8A98B51C0DC4DA533FF3E36C057E1FA8F2E8C51C0F9CED6DFD53636C06B57C7DBA18C51C0C796CBDB962E36C0EBD77F50038D51C083A4A1C7432636C0D81CAEB2528D51C06BF77643DE1D36C034E0DBC68F8D51C0C48E69EF671536C002DC9251BA8D51C0CD69976BE20C36C03ECA5C17D28D51C0C3871E584F0436C0F164C3DCD68D51C0EAE71C55B0FB35C0010200000002000000AE471066DAFE553F4DC1CCD2A906E03F37B9CA02EF11703FC5CD8EE01C06E03F01020000002000000037B9CA02EF11703FC5CD8EE01C06E03F90B067097ABD9C3FF8A7C25CF600E03FF6C2C31C18DEAB3F34B94E2919E0DF3FF60D67DFBA94B43F72CBFEC26AA8DF3F767720C7211EBB3F21909E54735BDF3F8F8CA2CB7BC4C03FD60F37ACC4F9DE3F0AF7C59079E9C33FD355D197F083DE3F52FCD59BE5FCC63F916B76E588FADD3F6416AE559BFDC93F875A2F631F5EDD3F31C8292776EACC3F152D05DF45AFDC3F808D247951C2CF3FB1EC00278EEEDB3FD7F23C5A0442D13F83A52B098A1CDB3F27A702A13B97D23F3A5F8E53CB39DA3F772251453CE0D33F502332D4E346D93F272796FB731CD53F3DFB1F596544D83F33723F78504BD63F26F360B0E132D73F67C2BA6F3F6CD73FA113FEA7EA12D63F6ED77596AE7ED83F0A67000E12E5D43F1370DEA00B82D93FDBF670B0E9A9D33FE94C6243C475DA3F71CD585D0362D23F9E2D6F324659DB3F5FF3C0E2F00DD13F30CF7222FF2BDC3FD1E7641D885CCF3F4DF1DAC75CEDDC3F0AB16C5E1D87CC3F535615D7CC9CDD3F2557AB24C59CC93F92B88F04BD39DE3F4AEB320CA39EC63F31DCB7049BC3DE3FC58515B1DA8DC33F497DFB8BD439DF3F2D3465AF8F6BC03FA45AC84ED79BDF3F2F216846CB71BA3F84378C0111E9DF3FC954285100EEB33F8F675AAC7710E03F37595E6E0B9CAA3F02F157047021E03FB85683C28A509A3F8097F5622827E03FBF9F482FC5B04EBF0102000000200000008097F5622827E03FBF9F482FC5B04EBF8FF057047021E03F6FD27715973B9CBF37665AAC7710E03F359ED8979191ABBF9F368C0111E9DF3F4877E565C368B4BFBF59C84ED79BDF3FAE43255B8EECBABF497DFB8BD439DF3F35C7C339F1A8C0BF31DCB7049BC3DE3F7313743B3CCBC3BF77B98F04BD39DE3F897C919604DCC6BF535615D7CC9CDD3F9CE609AF26DAC9BF17F3DAC75CEDDC3F1344CBE87EC4CCBF15D07222FF2BDC3FD97AC3A7E999CFBFB82C6F324659DB3FFF3BF0A7A12CD1BFE94C6243C475DA3F10168822B480D2BFF870DEA00B82D93F7B3FA0759AC8D3BF6ED77596AE7ED83FAAAF2FD3C203D5BF9CC0BA6F3F6CD73F415C2D6D9B31D6BF4E713F78504BD63FAA3C90759251D7BF272796FB731CD53FDC434F1E1663D8BF772251453CE0D33F0B6B61999465D9BF41A602A13B97D23FF6A6BD187C58DABFF2F13C5A0442D13F07EF5ACE3A3BDBBFB68B247951C2CF3F353630EC3E0DDCBF9CC4292776EACC3F997634A4F6CDDCBF6416AE559BFDC93F27A35E28D07CDDBF88FAD59BE5FCC63F30B4A5AA3919DEBFD5F8C59079E9C33F8E9D005DA1A2DEBF5A8EA2CB7BC4C03F765866717518DFBF767720C7211EBB3FDCD7CD19247ADFBF8A1167DFBA94B43F12142E881BC7DFBF1FCAC31C18DEAB3FD4017EEEC9FEDFBF33CD67097ABD9C3FD64B5ABF4E10E0BF36E5D8B785A56F3F0EFA6E8D7815E0BF01020000000200000036E5D8B785A56F3F0EFA6E8D7815E0BFAE471066DAFE553F9D6564350216E0BF010200000020000000AE471066DAFE553F9D6564350216E0BF3EC4A5BC9EFD99BF634B5ABF4E10E0BFA4C562762A7EAABF0B007EEEC9FEDFBFE192360CC4E4B3BF2D132E881BC7DFBFCDF8EFF32A6EBABFF8D6CD19247ADFBFA6490A62806CC0BF925766717518DFBFB6B72D277E91C3BF8E9D005DA1A2DEBF69B93D32EAA4C6BF30B4A5AA3919DEBF45D515EC9FA5C9BF27A35E28D07CDDBF7E8391BD7A92CCBF997634A4F6CDDCBF03478C0F566ACFBFFE3730EC3E0DDCBF63D170A50616D1BF07EF5ACE3A3BDBBFB28536EC3D6BD2BFF6A6BD187C58DABFE80185903EB4D3BF0B6B61999465D9BF9706CA4676F0D4BFDC434F1E1663D8BFBF5073C3521FD6BFC63B90759251D7BFF2A0EEBA4140D7BF415C2D6D9B31D6BFFAB5A9E1B052D8BFAAAF2FD3C203D5BF844F12EC0D56D9BF973EA0759AC8D3BF3F2D968EC649DABF2C158822B480D2BF290CA37D482DDBBFFF3BF0A7A12CD1BFA0AEA66D0100DCBF1179C3A7E999CFBFA3D10E135FC1DCBF4A42CBE87EC4CCBFDF344922CF70DDBF64E809AF26DAC9BFE898C34FBF0DDEBF897C919604DCC6BFBCBAEB4F9D97DEBF3B15743B3CCBC3BFD55B2FD7D60DDFBF35C7C339F1A8C0BFFA3AFC99D96FDFBF1D40255B8EECBABFF516C04C13BDDFBF4877E565C368B4BFA9ADE8A3F1F4DFBF58A5D8979191ABBFBAE0F129710BE0BFB4E07715973B9CBF38878F882911E0BFBF9F482FC5B04EBF01020000002000000038878F882911E0BFBF9F482FC5B04EBFBAE0F129710BE0BF734883C28A509A3F73AFE8A3F1F4DFBF5A605E6E0B9CAA3FF516C04C13BDDFBFC954285100EEB33FDF3BFC99D96FDFBF2F216846CB71BA3FD55B2FD7D60DDFBFF63565AF8F6BC03FA1BBEB4F9D97DEBFC58515B1DA8DC33F0398C34FBF0DDEBF4AEB320CA39EC63FC4354922CF70DDBF2557AB24C59CC93FBED00E135FC1DCBF0AB16C5E1D87CC3FD6ACA66D0100DCBF40E4641D885CCF3F290CA37D482DDBBF5FF3C0E2F00DD13F5A2C968EC649DABF8CCC585D0362D23F844F12EC0D56D9BFDBF670B0E9A9D33FFAB5A9E1B052D8BF0A67000E12E5D43FD7A1EEBA4140D7BFA113FEA7EA12D63FBF5073C3521FD6BF26F360B0E132D73F9706CA4676F0D4BF3DFB1F596544D83FE80185903EB4D3BF6C2232D4E346D93FB28536EC3D6BD2BF3A5F8E53CB39DA3F63D170A50616D1BF83A52B098A1CDB3F974A8C0F566ACFBF7AEE00278EEEDB3F128791BD7A92CCBFF92D05DF45AFDC3F45D515EC9FA5C9BF6C5B2F631F5EDD3F69B93D32EAA4C6BF916B76E588FADD3FB6B72D277E91C3BFD355D197F083DE3F714B0A62806CC0BFF20E37ACC4F9DE3FCDF8EFF32A6EBABF3D8F9E54735BDF3FB88B360CC4E4B3BF8DCAFEC26AA8DF3F52B762762A7EAABF50B84E2919E0DF3FECB5A5BC9EFD99BF86A7C25CF600E03FAE471066DAFE553F4DC1CCD2A906E03F0102000000020000003797E2AA7273554040B0A481C4FB0B403797E2AA727355408C454A0E33F70F40');

The special visual functions you will see with the shots and the rink are done with some functions for Postgres in pg_svg. This isn’t really an extension, it is just a handy functions you can load into any Postgres database to help create SVGs. To load this in your database download it and run something like:

psql postgres://postgres:123155012sdfxxcwsdfweweff@p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5432/postgres < pg-svg-lib.sql

Brian wrote two sample SVG shot chart functions for this project. One large and one small that could fit inside a spreadsheet if that’s your final data destination.

Big chart function
-- FUNCTION: postgisftw.big_chart(text)

-- pg_featureserv looks for functions in the 'postgisftw' schema

-- ** IMPORTANT  SRID 32613 is 'fake', just needed a planar projection to work with the arbitrary X/Y of the rink

CREATE OR REPLACE FUNCTION postgisftw.big_chart(
	player_id text DEFAULT '8476455'::text) -- if no id, then Landeskog goals
    RETURNS TABLE(svg text)
    LANGUAGE 'plpgsql'
    COST 100
    STABLE STRICT PARALLEL UNSAFE
    ROWS 1000

AS $BODY$
BEGIN
  RETURN QUERY

  -- we only want to display the offensive end of the rink
with half_rink as (
select st_intersection(therink.geom,ST_SetSRID(ST_MakeBox2D(ST_Point(-0.1, 42.55), ST_Point(101, -42.55)), 32613))
as geom
from therink
),

goals as (
-- collect all of a player's goals into a single geometry
select 	ST_SetSRID(st_collect(geom)::geometry, 32613) as geom
	from
(	SELECT
	st_intersection(ST_SetSRID(goals.plot_pt,32613),ST_SetSRID(ST_MakeBox2D(ST_Point(-0.1, 42.55), ST_Point(101, -42.55)), 32613))
 	as geom
 	from postgisftw.goals
	WHERE playerid ILIKE player_id || '%'

)q1
),
   -- get player name, team total number of goals for title display
playerinfo AS (

	select UPPER(q1.players) as this_player,min(q1.team_scored) as this_team
	, count(q1.playerid)::text as num_goals from
	(
	select a.players,a.playerid,a.team_scored
	from postgisftw.goals a WHERE playerid ILIKE player_id || '%'
	) q1
	group by q1.players

),

-- make the SVG document

shapes AS (

  --rink styling
  SELECT geom, svgShape( geom,
    style => svgStyle(  'stroke', '#2E9AFE',
                        'stroke-width', 0.5::text )
					   )
    svg FROM half_rink

  UNION ALL
	-- goals styling
	SELECT geom, svgShape( geom,
    style => svgStyle(  'stroke', '#F5A9A9',
                        'stroke-width', 0.5::text,
					  	'fill','#FF0040'
					    					 )
					   )
    svg FROM goals

	UNION ALL
	-- player name, team, and total number of goals
	-- create an arbitrary point underneath the rink and reasonably centered
	SELECT NULL, svgText(ST_SetSRID(ST_MakePoint(50,-46),32613),this_player||'  ('||this_team||') -  '||num_goals||' goals',
	style => svgStyle(  'fill', '#585858', 'text-anchor', 'middle', 'font', 'bold 3px sans-serif' ) )
    svg
	from playerinfo

)
-- create the final viewbox
-- Martin Davis uses a sensible default of expanding the collected geometry
-- since our rink geometry is static, I hard coded a viewbox
SELECT svgDoc( array_agg( shapes.svg ),
	viewbox => '-2.1 -44.5 104.4 93'
    --viewbox => svgViewbox( ST_Expand( ST_Extent(geom), 2))
  ) AS svg FROM shapes
  ;
END;
$BODY$;

ALTER FUNCTION postgisftw.big_chart(text)
    OWNER TO postgres;

The big chart will be centered in the browser with no height and width specification in the first line. In addition, we have added a title line with player name, team, and number of goals.

Cell size chart function
  -- FUNCTION: postgisftw.cell_chart(text)

  -- DROP FUNCTION IF EXISTS postgisftw.cell_chart(text);

  -- pg_featureserv looks for functions in the 'postgisftw' schema

  -- TO GET OUR CHART TO DISPLAY REASONABLY IN Google Sheets we need three adjustments:
  --  1) 'shrink' the geometries to 40% of their default size applying ST_SCALE
  --  2) Use ST_TRANSLATE to slide the upper left corner of the rink to (0,0) -- as much as practical
  --  3) Add a hard coded set of height and width values to the final SVG document

  -- ** IMPORTANT  SRID 32613 is 'fake', just needed a planar projection to work with the arbitrary X/Y of the rink

  CREATE OR REPLACE FUNCTION postgisftw.cell_chart(
  	rec_num_id text DEFAULT '4668'::text -- if no id, then Landeskog goal
  	)
      RETURNS TABLE(svg text)
      LANGUAGE 'plpgsql'
      COST 100
      STABLE STRICT PARALLEL UNSAFE
      ROWS 1000

  AS $BODY$
  BEGIN
    RETURN QUERY

  with half_rink as (

  select st_translate(     -- Scale and Translate for Google Sheets use case
  	st_scale(q1.geom,0.4,0.4)
  	,-2,-18
  ) as geom from
  	(
  		-- we only want to display the offensive end of the rink
  		select st_intersection(therink.geom,ST_SetSRID(ST_MakeBox2D(ST_Point(-0.1, 42.55), ST_Point(101, -42.55)), 32613))
  		as geom
  		from therink
  	) q1
  ),
  goals as (
  select
  	st_translate(   -- Scale and Translate for Google Sheets use case
  	st_scale(q2.geom,0.4,0.4)
  	,-2,-18 )
  	 as geom from
  	(
  		-- collect all of a player's goals into a single geometry
  		SELECT ST_SetSRID(st_collect(geom)::geometry, 32613) as geom
  		from
  		(	SELECT
  			st_intersection(ST_SetSRID(goals.plot_pt,32613),ST_SetSRID(ST_MakeBox2D(ST_Point(-0.1, 42.55), ST_Point(101, -42.55)), 32613))
  			as geom
  			from postgisftw.goals
  			WHERE rec_num = rec_num_id::INTEGER -- uses the rec_num id fed into the function
  		)q1
  	)q2
  ),

  shapes AS (

    -- Rink SVG + styling
    SELECT geom, svgShape( geom,
      style => svgStyle(  'stroke', '#2E9AFE',
                          'stroke-width', 0.5::text )
  					   )
      svg FROM half_rink

    UNION ALL

  	-- goals SVG + styling
  	SELECT geom, svgShape( geom,
      style => svgStyle(  'stroke', '#F5A9A9',
                          'stroke-width', 0.5::text,
  					  	'fill','#FF0040'
  					    					 )
  					   )
      svg FROM goals

  )
  	--IMPORTANT we are hard-coding the extent of the document + adding height and width explicitly
  	--Google Sheets needs the height and width of the document specified (apparently)

  SELECT svgDoc( array_agg( shapes.svg ),
   	'0 0 43 36" width="43mm" height="36mm '  --**WARNING -- hard coded values
    ) AS svg FROM shapes
    ;
  END;
  $BODY$;

  ALTER FUNCTION postgisftw.cell_chart(text)
      OWNER TO postgres;

The small chart is scaled down, and the content is shifted to the origin of the SVG coordinate space ( 0,0 is in the upper left corner). In the small chart, you can see we have added width and height parameters in millimeters.

pg_featureserv = JSON and SVG URLs from Postgres

pg_featureserv is a project that will run a separate lightweight Go server on top of your Postgres database to expose JSON, Geojson, and (newly) SVGs. pg_featureserv requires data to have a spatial reference id (SRID). You can just use a stand-in SRID and that is what is in the example data and functions.

pg_featureserv can be run as its own server and you can also run it from inside your database using the Crunchy Bridge Container Apps feature, based off of the podman project. To build a pg_featureserv container in a database, you’ll run something like this:

SELECT run_container('-dt -p 5433:5433/tcp -e DATABASE_URL="postgres://postgres:Rb3bZ1VZ7dZIUiFiy62J0OHVZybYROJjoDId@p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5432/postgres" -e PGFS_SERVER_HTTPPORT=5433 docker.io/pramsey/pg_featureserv:latest');

pg_featureserv will then be running in a web browser at a link like http://p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5433. To get data from pg_featureserv, you make requests with URLs for the data you want. Here’s a couple of samples:

JSON:

http://p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5433/collections/postgisftw.goals/items.json

SVG:

http://p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5433/functions/postgisftw.cell_chart/items.svg

You can further qualify URLs with player details and other queries in the url strings, like this:

http://p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5433/functions/postgisftw.cell_chart/items.svg?player_id=8471677

Here’s your resulting SVG file displayed at a browser URL.

svg in browser featureservs

Google sheets import of JSON and SVG

To load the JSON data into a Google Sheet, the fastest approach is to use Apps Scripts to write some JavaScript to process the JSON into an array of rows containing an array of columns. In a Google Sheet, go to Extensions > App Scripts. Create a new blank script, and replace the generated code with the following:

function ImportJSON(url) {
	const response = UrlFetchApp.fetch(url)
	const jsonString = response.getContentText()
	const data = JSON.parse(jsonString).features.map(feature => ({
		point_x: feature.geometry.coordinates[0],
		point_y: feature.geometry.coordinates[1],
		...feature.properties,
	}))

	const columns = [
		'players',
		'team_scored',
		'period_num',
		'this_event',
		'this_event_code',
		'playerid',
		'game_id',
		'rec_num',
	]

	const rows = data.map(item => columns.map(column => item[column]))

	return [columns].concat(rows)
}

Please note this is a specialized version of the function to only select specific columns and reorder them. To make it more general, replace the columns variable instantiation with something like the following:

const columns = Object.keys(data[0])

Consider renaming the file to something like ImportJSON.gs then save the file as the last step. This will provide an ImportJSON() function we can use within the Google Sheet. In your Google Sheet, enter into a cell like A1 and use the something like this to combine bring in the JSON data with a limit or filters:

=ImportJSON("http://p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5433/collections/postgisftw.goals/items.json?limit=50")

This will load the JSON data into the Google Sheet starting at A1.

To make a SVG ready for Google Sheet, use the Google Sheets IMAGE function with the pg_featureserv URL. Concatenating the URL lets us tie the JSON row to the right SVG data.

=IMAGE(CONCATENATE("http://p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5433/functions/postgisftw.cell_chart/items.svg?rec_num_id=", B1))

Here’s a view of our final spreadsheet

google sheet screenshot

Open source for the win

Crunchy Data supports both pg_featureserv and pg_svg until I saw this talk, I had no idea they would work together. Martin obviously did because he wrote them both! The best part is that our fully managed Crunchy Bridge supported all of this, so it was super easy for me to set this up on a test sersver and tear it down when I'm finished testing.



Thanks to Jay Zawrotny for the javascript assistance. A huge thank you to Brian Timoney for letting me experiment with his hockey code and SVGs.

by Elizabeth Christensen (Elizabeth.Christensen@crunchydata.com) at January 30, 2024 01:00 PM

Crunchy Data

JSON and SVG from PostGIS into Google Sheets

At PostGIS Day 2023, one of our speakers showed off a really cool demo for getting JSON and SVGs in and out of Postgres / PostGIS and into Google Sheets. Brian Timoney put together several open source projects in such a cool way that I just had to try it myself. If you want to see his demo video, it is on YouTube. With Brian’s blessing, I’m writing up some additional details with a few of the sample code bits for those of you that want to try this or something similar for your own projects.

So what do we have here? We have Postgres data that is coming into Google sheets in real time, tied to a custom SVG.

hockey spreadsheet.png

Before we dive in, an overview of things that I’ll cover to make this happen :

  • Running pg_featureserv from inside a database
  • Serving JSON data from Postgres with pg_featureserv
  • Functions to create SVG imasges
  • Serving SVG images from Postgres with pg_featureserv
  • JSON & SVGs delivered to Google Sheets

postgis svg google sheet overview image

pg_svg functions

Brian wrote some special stuff for the goal and shot data in his examples to get it just right so if you want to play with a sample of that, here’s some data for you.

Sample data
-- Regular season goals of Colorado Avalanche for 2021-2022 season
--

-- information derived from public NHL API
-- shot locations normalized for offensive end of ice
-- hex_id was derived for a demo for the 2022 PostGIS Day demo

SET client_encoding = 'UTF8';

CREATE TABLE public.goals (
    rec_num integer,
    game_id text,
    this_event text,
    this_event_code text,
    players text,
    playerid text,
    player_role text,
    x_coord text,
    y_coord text,
    team_scored text,
    period_num text,
    period_type text,
    plot_x numeric,
    plot_y numeric,
    plot_pt public.geometry(Point,32613),
    hex_id numeric
);

ALTER TABLE public.goals OWNER TO postgres;

INSERT INTO public.goals VALUES (26, '2021020005', 'Goal', 'COL24', 'Jack Johnson', '8471677', 'Scorer', '-77.0', '1.0', 'Colorado Avalanche', '1', 'REGULAR', 77.0, -1.0, '01010000000000000000405340000000000000F0BF', 258);
INSERT INTO public.goals VALUES (5997, '2021020982', 'Goal', 'SJS204', 'Darren Helm', '8471794', 'Scorer', '-76.0', '5.0', 'Colorado Avalanche', '1', 'REGULAR', 76.0, -5.0, '0101000000000000000000534000000000000014C0', 257);
INSERT INTO public.goals VALUES (2432, '2021020415', 'Goal', 'COL45', 'Darren Helm', '8471794', 'Scorer', '-75.0', '-3.0', 'Colorado Avalanche', '1', 'REGULAR', 75.0, 3.0, '01010000000000000000C052400000000000000840', 258);
Sample data for the rink (this is a DXF CAD file encoded as a geometry string)
  -- Rink map created from random DXF file found on internet
  --
  -- ** IMPORTANT: SRID of 32613 is fake!! It is just an arbitrary X/Y plane

SET client_encoding = 'UTF8';

CREATE TABLE public.therink ( id_num integer, geom
public.geometry(MultiLineString,32613) );

ALTER TABLE public.therink OWNER TO postgres;

INSERT INTO public.therink VALUES (1,
'0105000020657F00003501000001020000000200000018C5724B2B13594045920F30A97C3CC018C5724B2B1359400570C4A4097D3C40010200000002000000372861A68D90554083BAEDE7B93D45408C5E46B1BC8F55C083BAEDE7B93D45400102000000020000001DBB2CA22D515640B31ADE9525FE0FC0CD49EF1B1F515640B31ADE9525FE0FC0010200000002000000CD49EF1B1F515640B31ADE9525FE0FC024A62CBF532F5540B31ADE9525FE0FC001020000000200000024A62CBF532F5540EAB17E4ACDFA0F40CD49EF1B1F515640EAB17E4ACDFA0F40010200000003000000CD49EF1B1F515640EAB17E4ACDFA0F401DBB2CA22D515640EAB17E4ACDFA0F401DBB2CA22D515640E528AB7FA50C09400102000000020000001DBB2CA22D515640E528AB7FA50C09401DBB2CA22D515640BD115AA41B5409C00102000000020000001DBB2CA22D515640BD115AA41B5409C01DBB2CA22D515640B31ADE9525FE0FC0010200000002000000DB4104A04A5056C0961ADE9525FE0FC09CE61DA7485056C0961ADE9525FE0FC00102000000020000009CE61DA7485056C0961ADE9525FE0FC0E22C04BD702E55C0961ADE9525FE0FC0010200000002000000E22C04BD702E55C006B27E4ACDFA0F409CE61DA7485056C006B27E4ACDFA0F400102000000030000009CE61DA7485056C006B27E4ACDFA0F40DB4104A04A5056C006B27E4ACDFA0F40DB4104A04A5056C06BE28752570C0940010200000002000000DB4104A04A5056C06BE28752570C0940DB4104A04A5056C0CB53C764D15309C0010200000002000000DB4104A04A5056C0CB53C764D15309C0DB4104A04A5056C0961ADE9525FE0FC001020000000200000057FAD005B5AD51405256783CD23D424057FAD005B5AD514020D96D61A7BD4340010200000002000000E00508EE597D55C00CE7035D56FC0FC0E00508EE597D55C0C0515ED0E7000CC0010200000002000000E00508EE597D55C05DB0A481C4FB0B40E00508EE597D55C0A8454A0E33F70F400102000000020000003797E2AA7273554028E7035D56FC0FC03797E2AA72735540DD515ED0E7000CC001020000000200000018C5724B2B1359400570C4A4097D3C4009A9C0BAF9115940005B6E8783413D4001020000000200000009A9C0BAF9115940005B6E8783413D400A45BCDB6D0E5940A5FCC69496023E400102000000020000000A45BCDB6D0E5940A5FCC69496023E40648100EB940859401AC2D1070EC03E40010200000002000000648100EB940859401AC2D1070EC03E405C4628257C0059408A18921BB5793F400102000000020000005C4628257C0059408A18921BB5793F40397CCEC630F6584094B68585AB174040010200000002000000397CCEC630F6584094B68585AB174040420B8E0CC0E958408F96A0885F704040010200000002000000420B8E0CC0E958408F96A0885F704040BEDB013337DB5840C6629B34DCC64040010200000002000000BEDB013337DB5840C6629B34DCC64040F3D5C476A3CA5840CFD1F726071B4140010200000002000000F3D5C476A3CA5840CFD1F726071B414028E2711412B858403C9A37FDC56C414001020000000200000028E2711412B858403C9A37FDC56C4140A4E8A34890A35840AF72DC54FEBB4140010200000002000000A4E8A34890A35840AF72DC54FEBB4140AFD1F54F2B8D5840B01168CB95084240010200000002000000AFD1F54F2B8D5840B01168CB950842408D850267F0745840DC2D5CFE715242400102000000020000008D850267F0745840DC2D5CFE7152424087EC64CAEC5A5840C27D3A8B7899424001020000000200000087EC64CAEC5A5840C27D3A8B78994240E2EEB7B62D3F5840FDB7840F8FDD4240010200000002000000E2EEB7B62D3F5840FDB7840F8FDD4240E6749668C02158401A93BC289B1E4340010200000002000000E6749668C02158401A93BC289B1E4340D9669B1CB2025840B5C56374825C4340010200000002000000D9669B1CB2025840B5C56374825C434003AD610F10E257405F06FC8F2A97434001020000000200000003AD610F10E257405F06FC8F2A974340A82F847DE7BF5740B00B071979CE4340010200000002000000A82F847DE7BF5740B00B071979CE434012D79DA3459C5740398C06AD5302444001020000000200000012D79DA3459C5740398C06AD53024440878B49BE37775740953E7CE99F324440010200000002000000878B49BE37775740953E7CE99F3244404D35220ACB50574057D9E96B435F44400102000000020000004D35220ACB50574057D9E96B435F4440A8BCC2C30C2957400D13D1D123884440010200000002000000A8BCC2C30C2957400D13D1D123884440E509C6270A00574055A2B3B826AD4440010200000002000000E509C6270A00574055A2B3B826AD44404605C772D0D55640C13D13BE31CE44400102000000020000004605C772D0D55640C13D13BE31CE4440139760E16CAA5640E59B717F2AEB4440010200000002000000139760E16CAA5640E59B717F2AEB444093A72DB0EC7D56405773509AF603454001020000000200000093A72DB0EC7D56405773509AF6034540CD49EF1B1F51564008ED564C24184540010200000002000000CD49EF1B1F51564008ED564C241845400D1FC91B5D505640AD7A31AC7B1845400102000000020000000D1FC91B5D505640AD7A31AC7B184540C6E5CD60CB2156407A6896529F284540010200000002000000C6E5CD60CB2156407A6896529F28454008E4D6BB44F2554053F3002B4734454001020000000200000008E4D6BB44F2554053F3002B4734454015027F69D6C15540D0D1F2D2583B454001020000000200000015027F69D6C15540D0D1F2D2583B4540372861A68D90554083BAEDE7B93D45400102000000020000008C5E46B1BC8F55C083BAEDE7B93D45406B38647405C155C0D0D1F2D2583B45400102000000020000006B38647405C155C0D0D1F2D2583B45405D1ABCC673F155C057F3002B473445400102000000020000005D1ABCC673F155C057F3002B47344540191CB36BFA2056C07D6896529F284540010200000002000000191CB36BFA2056C07D6896529F2845406055AE268C4F56C0B17A31AC7B1845400102000000020000006055AE268C4F56C0B17A31AC7B1845409CE61DA7485056C06A4459C6261845400102000000020000009CE61DA7485056C06A4459C626184540E5DD12BB1B7D56C05773509AF6034540010200000002000000E5DD12BB1B7D56C05773509AF603454067CD45EC9BA956C0E99B717F2AEB444001020000000200000067CD45EC9BA956C0E99B717F2AEB44409A3BAC7DFFD456C0C13D13BE31CE44400102000000020000009A3BAC7DFFD456C0C13D13BE31CE44403640AB3239FF56C055A2B3B826AD44400102000000020000003640AB3239FF56C055A2B3B826AD4440FCF2A7CE3B2857C00D13D1D123884440010200000002000000FCF2A7CE3B2857C00D13D1D1238844409B6B0715FA4F57C053D9E96B435F44400102000000020000009B6B0715FA4F57C053D9E96B435F4440DAC12EC9667657C0993E7CE99F324440010200000002000000DAC12EC9667657C0993E7CE99F324440650D83AE749B57C03D8C06AD53024440010200000002000000650D83AE749B57C03D8C06AD53024440FB65698816BF57C0B00B071979CE4340010200000002000000FB65698816BF57C0B00B071979CE434054E3461A3FE157C05F06FC8F2A97434001020000000200000054E3461A3FE157C05F06FC8F2A9743402C9D8027E10158C0B8C56374825C43400102000000020000002C9D8027E10158C0B8C56374825C434038AB7B73EF2058C01E93BC289B1E434001020000000200000038AB7B73EF2058C01E93BC289B1E434035259DC15C3E58C0FDB7840F8FDD424001020000000200000035259DC15C3E58C0FDB7840F8FDD4240DA224AD51B5A58C0C67D3A8B78994240010200000002000000DA224AD51B5A58C0C67D3A8B78994240E2BBE7711F7458C0E02D5CFE71524240010200000002000000E2BBE7711F7458C0E02D5CFE715242400208DB5A5A8C58C0B41168CB950842400102000000020000000208DB5A5A8C58C0B41168CB95084240FA1E8953BFA258C0B372DC54FEBB4140010200000002000000FA1E8953BFA258C0B372DC54FEBB41407E18571F41B758C0439A37FDC56C41400102000000020000007E18571F41B758C0439A37FDC56C4140460CAA81D2C958C0D2D1F726071B4140010200000002000000460CAA81D2C958C0D2D1F726071B41401412E73D66DA58C0C6629B34DCC640400102000000020000001412E73D66DA58C0C6629B34DCC6404096417317EFE858C08F96A0885F70404001020000000200000096417317EFE858C08F96A0885F7040408BB2B3D15FF558C097B68585AB1740400102000000020000008BB2B3D15FF558C097B68585AB174040B27C0D30ABFF58C09118921BB5793F40010200000002000000B27C0D30ABFF58C09118921BB5793F40B8B7E5F5C30759C01EC2D1070EC03E40010200000002000000B8B7E5F5C30759C01EC2D1070EC03E405C7BA1E69C0D59C0A9FCC69496023E400102000000020000005C7BA1E69C0D59C0A9FCC69496023E405CDFA5C5281159C0045B6E8783413D400102000000020000005CDFA5C5281159C0045B6E8783413D406CFB57565A1259C00970C4A4097D3C400102000000020000006CFB57565A1259C041920F30A97C3CC060DFA5C5281159C0377DB91223413DC001020000000200000060DFA5C5281159C0377DB91223413DC0617BA1E69C0D59C0DA1E122036023EC0010200000002000000617BA1E69C0D59C0DA1E122036023EC0B8B7E5F5C30759C051E41C93ADBF3EC0010200000002000000B8B7E5F5C30759C051E41C93ADBF3EC0B27C0D30ABFF58C0C63ADDA654793FC0010200000002000000B27C0D30ABFF58C0C63ADDA654793FC08BB2B3D15FF558C0B3472B4B7B1740C00102000000020000008BB2B3D15FF558C0B3472B4B7B1740C099417317EFE858C0AA27464E2F7040C001020000000200000099417317EFE858C0AA27464E2F7040C01212E73D66DA58C0E2F340FAABC640C00102000000020000001212E73D66DA58C0E2F340FAABC640C0460CAA81D2C958C0ED629DECD61A41C0010200000002000000460CAA81D2C958C0ED629DECD61A41C07C18571F41B758C05F2BDDC2956C41C00102000000020000007C18571F41B758C05F2BDDC2956C41C0F61E8953BFA258C0D003821ACEBB41C0010200000002000000F61E8953BFA258C0D003821ACEBB41C00208DB5A5A8C58C0D1A20D91650842C00102000000020000000208DB5A5A8C58C0D1A20D91650842C0E2BBE7711F7458C0FABE01C4415242C0010200000002000000E2BBE7711F7458C0FABE01C4415242C0DA224AD51B5A58C0E00EE050489942C0010200000002000000DA224AD51B5A58C0E00EE050489942C035259DC15C3E58C019492AD55EDD42C001020000000200000035259DC15C3E58C019492AD55EDD42C039AB7B73EF2058C0362462EE6A1E43C001020000000200000039AB7B73EF2058C0362462EE6A1E43C02C9D8027E10158C0D156093A525C43C00102000000020000002C9D8027E10158C0D156093A525C43C056E3461A3FE157C07C97A155FA9643C001020000000200000056E3461A3FE157C07C97A155FA9643C0FF65698816BF57C0CC9CACDE48CE43C0010200000002000000FF65698816BF57C0CC9CACDE48CE43C0650D83AE749B57C0571DAC72230244C0010200000002000000650D83AE749B57C0571DAC72230244C0D8C12EC9667657C0B2CF21AF6F3244C0010200000002000000D8C12EC9667657C0B2CF21AF6F3244C0A26B0715FA4F57C0716A8F31135F44C0010200000002000000A26B0715FA4F57C0716A8F31135F44C0FEF2A7CE3B2857C02BA47697F38744C0010200000002000000FEF2A7CE3B2857C02BA47697F38744C03A40AB3239FF56C07333597EF6AC44C00102000000020000003A40AB3239FF56C07333597EF6AC44C09B3BAC7DFFD456C0DECEB88301CE44C00102000000020000009B3BAC7DFFD456C0DECEB88301CE44C067CD45EC9BA956C0032D1745FAEA44C001020000000200000067CD45EC9BA956C0032D1745FAEA44C0E7DD12BB1B7D56C07504F65FC60345C0010200000002000000E7DD12BB1B7D56C07504F65FC60345C09CE61DA7485056C083D5FE8BF61745C00102000000020000009CE61DA7485056C083D5FE8BF61745C06055AE268C4F56C0CA0BD7714B1845C00102000000020000006055AE268C4F56C0CA0BD7714B1845C01B1CB36BFA2056C098F93B186F2845C00102000000020000001B1CB36BFA2056C098F93B186F2845C05B1ABCC673F155C07284A6F0163445C00102000000020000005B1ABCC673F155C07284A6F0163445C06938647405C155C0EE629898283B45C00102000000020000006938647405C155C0EE629898283B45C08C5E46B1BC8F55C0A14B93AD893D45C00102000000020000006CFB57565A1259C00970C4A4097D3C406CFB57565A1259C041920F30A97C3CC0010200000002000000372861A68D905540A34B93AD893D45C014027F69D6C15540EF629898283B45C001020000000200000014027F69D6C15540EF629898283B45C006E4D6BB44F255407384A6F0163445C001020000000200000006E4D6BB44F255407384A6F0163445C0C6E5CD60CB2156409AF93B186F2845C0010200000002000000C6E5CD60CB2156409AF93B186F2845C00B1FC91B5D505640CC0BD7714B1845C00102000000020000000B1FC91B5D505640CC0BD7714B1845C0CD49EF1B1F515640277EFC11F41745C0010200000002000000CD49EF1B1F515640277EFC11F41745C091A72DB0EC7D56407704F65FC60345C001020000000200000091A72DB0EC7D56407704F65FC60345C0119760E16CAA5640052D1745FAEA44C0010200000002000000119760E16CAA5640052D1745FAEA44C04405C772D0D55640E1CEB88301CE44C00102000000020000004405C772D0D55640E1CEB88301CE44C0E509C6270A0057407433597EF6AC44C0010200000002000000E509C6270A0057407433597EF6AC44C0A8BCC2C30C2957402DA47697F38744C0010200000002000000A8BCC2C30C2957402DA47697F38744C04B35220ACB505740756A8F31135F44C00102000000020000004B35220ACB505740756A8F31135F44C0878B49BE37775740B5CF21AF6F3244C0010200000002000000878B49BE37775740B5CF21AF6F3244C012D79DA3459C57405B1DAC72230244C001020000000200000012D79DA3459C57405B1DAC72230244C0A82F847DE7BF5740CF9CACDE48CE43C0010200000002000000A82F847DE7BF5740CF9CACDE48CE43C001AD610F10E257407F97A155FA9643C001020000000200000001AD610F10E257407F97A155FA9643C0D9669B1CB2025840D456093A525C43C0010200000002000000D9669B1CB2025840D456093A525C43C0E4749668C02158403A2462EE6A1E43C0010200000002000000E4749668C02158403A2462EE6A1E43C0E0EEB7B62D3F58401B492AD55EDD42C0010200000002000000E0EEB7B62D3F58401B492AD55EDD42C085EC64CAEC5A5840E40EE050489942C001020000000200000085EC64CAEC5A5840E40EE050489942C08D850267F0745840FEBE01C4415242C00102000000020000008D850267F0745840FEBE01C4415242C0AFD1F54F2B8D5840D4A20D91650842C0010200000002000000AFD1F54F2B8D5840D4A20D91650842C0A4E8A34890A35840D103821ACEBB41C0010200000002000000A4E8A34890A35840D103821ACEBB41C028E2711412B85840612BDDC2956C41C001020000000200000028E2711412B85840612BDDC2956C41C0F3D5C476A3CA5840EE629DECD61A41C0010200000002000000F3D5C476A3CA5840EE629DECD61A41C0BEDB013337DB5840E5F340FAABC640C0010200000002000000BEDB013337DB5840E5F340FAABC640C0420B8E0CC0E95840AF27464E2F7040C0010200000002000000420B8E0CC0E95840AF27464E2F7040C0397CCEC630F65840B6472B4B7B1740C0010200000002000000397CCEC630F65840B6472B4B7B1740C05C4628257C005940CD3ADDA654793FC00102000000020000005C4628257C005940CD3ADDA654793FC0648100EB940859405AE41C93ADBF3EC0010200000002000000648100EB940859405AE41C93ADBF3EC00A45BCDB6D0E5940E31E122036023EC00102000000020000000A45BCDB6D0E5940E31E122036023EC009A9C0BAF9115940417DB91223413DC001020000000200000009A9C0BAF9115940417DB91223413DC018C5724B2B13594045920F30A97C3CC00102000000020000008C5E46B1BC8F55C0A14B93AD893D45C01708294FCB1039C0A24B93AD893D45C00102000000020000001708294FCB1039C0A24B93AD893D45C0B8735DA930FF553FA24B93AD893D45C0010200000002000000B8735DA930FF553FA24B93AD893D45C03FB97F5583143940A24B93AD893D45C00102000000020000003FB97F5583143940A24B93AD893D45C0372861A68D905540A34B93AD893D45C00102000000020000000FB808FEB792B8BF69C28AAE66F02C403F2F19F73F81733F3B6032CA0EEF2C400102000000200000003F2F19F73F81733F3B6032CA0EEF2C403A673B1A78A8E53FC35881DF18E62C405649D723CC06F73F5238BD4887C72C405F0F1B7B31850140198CC2AB35952C40AF0E125B6F6D0740077F15CAA74F2C407997C5CA0E3A0D400A3C3A6561F72B40EA4E95717F74114011EEB43EE68C2B40A70B9B5E173C144009C00918BA102B400D7CEEB8C6F21640F0DCBCB260832A408C1A0A0D859719409E6F52D05DE52940686168E749291C401EA34E3235372940F5CA83D40CA71E4050A2359A6A792840D2686BB0E28720402A988BC981AC2740E3F76D8C35B12140A1AFD481FED02640DFCF86C4FACE22409513958464E72540F02DF31EAEE023400AEF509337F02440464FF061CBE52440D96C8C6FFBEB23400471BB53CEDD25400DB8CBDA33DB224062D091BA32C8264086FB929664BE21407BAAB05C74A427402B62666411962040953C55000F722840FE2D940B7CC51E40CCC3BC6B7E302940E4898478DC491C40587D24653EDF2940D32DA6924BBA194053A6C9B2CA7D2A40AB6F01DDD0171740FE7BE91A9F0B2B4062A59EDA73631440823BC16337882B40C924860E3C9E114008228E530FF32B40768780F761920D40AB6C8DB0A24B2C4064B0AA4AB4CA0740BA58FC406D912C40DC6F9B1C7EE70140502318CBEAC32C40A0E3C6E69CD5F73F9C091E1597E22C4074874D54D15AE73FC3484BE5EDEC2C40DD1005114EB0A4BF010200000020000000C3484BE5EDEC2C40DD1005114EB0A4BF83B4233797E22C4056F68A829BF0E9BF0A85A54EEBC32C406491ED5E6620F9BF398EC55E6E912C40BF288F03D78C02C0D6A3789AA44B2C401AD1BA3B037008C0CA99B33412F32B4040B5C8B6A8370EC0BF436B603B882B4000E4C329DCF011C0C3759450A40B2B40A47E637811B614C085032438D17D2A40F3A3AAB66C6A17C0F7C00E4A46DF2940C8CD0054E60C1AC0D78149B9873029409A75CDBF769C1CC0FA19C9B8197228402515786916181FC0485D827B80A42740141334E05EBF20C0961F6A3440C826401B91029AB2E721C0AB347516DDDD25407041DB99820423C060709854DBE52440FAE071174B1524C0A1A6C821BFE02340812C7A4A881925C024ABFAB00CCF2240E2E0A76AB61026C0DA51233548B12140E2BAAEAF51FA26C0896E37E1F58720406A774251D6D527C028AA57D033A71E403DD31687C0A228C073B2EAF970291C40338BDF888C6029C0D39D11A5AB9719401F5C508EB60E2AC0E313B637ECF21640DA021DCFBAAC2AC04CBCC1173B3C1440333CF982153A2BC0B63E1EABA0741140FCC498E142B62BC090856AAF4A3A0D40125AAF22BF202CC075E0E006A36D07403AB8F07D06792CC086DD72285B850140579C102B95BE2CC0EF97E7BF0707F73F35C3C261E7F02CC06AECDBE4B7A8E53FA3E9BA59790F2DC03649A0A4F1BC683F167FB05775182DC00102000000020000003649A0A4F1BC683F167FB05775182DC00FB808FEB792B8BF7CCCAC4AC7192DC00102000000200000000FB808FEB792B8BF7CCCAC4AC7192DC0B095BD1926CDEBBFCC62A37B790F2DC0586098232319FABF5E42DFE4E7F02CC0E09AFBFA5C0E03C02D96E44796BE2CC04C9AF2DA9AF608C01B89376608792CC0DD22A64A3AC30EC021465C01C2202CC0D6948531153912C024F8D6DA46B62BC059518B1EAD0015C024CA2BB41A3A2BC0CDC1DE785CB717C007E7DE4EC1AC2AC02F60FACC1A5C1AC0C379746CBE0E2AC0EFA658A7DFED1CC043AD70CE956029C0A7107494A26B1FC06AAC5736CBA228C0A48B63902DEA20C044A2AD65E2D527C0C31A666C801322C0BBB9F61D5FFA26C0B8F27EA4453123C0B31DB720C51026C0D050EBFEF84224C01EF9722F981925C01F72E841164825C0F876AE0B5C1524C0E493B333194026C021C2ED76940423C042F3899A7D2A27C09205B532C5E721C05BCDA83CBF0628C0456C880072BF20C06E5F4DE059D428C03442D8433D181FC0ACE6B44BC99229C00B9EC8B09D9C1CC038A01C4589412AC0FA41EACA0C0D1AC034C9C19215E02AC0E0834515926A17C0DF9EE1FAE96D2BC089B9E21235B614C05B5EB94382EA2BC0F038CA46FDF011C0DA4486335A552CC0E0AF0868E4370EC08C8F8590EDAD2CC0B2D832BB367008C0A27BF420B8F32CC04698238D008D02C0304610AB35262DC03B34D7C7A120F9BF752C16F5E1442DC01D296E16DBF0E9BFA36B43C5384F2DC0BA0905114EB0A4BF010200000020000000A36B43C5384F2DC0BA0905114EB0A4BF79D71B17E2442DC0AD546AC0915AE73F00A89D2E36262DC00241DD7D61D5F73F27B1BD3EB9F32CC07100079354E70140C4C6707AEFAD2CC0CDA832CB80CA07409CBCAB145D552CC0B98C404626920D40AE66634086EA2BC0D9CF7FF11A9E1140A3988C30EF6D2BC06E6A1F40506314406D261C181CE02AC0CC8F667EAB171740D0E3062A91412AC085B9BC1B25BA194094A44199D29229C057618987B5491C40E13CC19864D428C00D01343155C51E4028807A5BCB0628C001091244FE952040764262148B2A27C00087E0FD51BE214084576DF6274026C05D37B9FD21DB224040939034264825C0DFD64F7BEAEB234073C9C0010A4324C06E2258AE27F024400BCEF290573123C0CBD685CE55E72540C1741B15931322C0D6B08C13F1D026406A912FC140EA20C0576D20B575AC2740E9EF4790C96B1FC026C9F4EA5F79284033F8DAB906EE1CC02381BDEC2B372940A2E30165415C1AC00F522EF255E52940B259A6F781B717C0CAF8FA325A832A400D02B2D7D00015C02332D7E6B4102B4076840E6B363912C0ECBA7645E28C2B4011114B2F76C30EC0FB4F8D865EF72B40F66BC186CEF608C02AAECEE1A54F2C40076953A8860E03C04092EE8E34952C40B8AEA8BF5E19FABF17B9A0C586C72C406E1A5EE465CDEBBF8CDF98BD18E62C400FB808FEB792B8BF69C28AAE66F02C40010200000002000000AE471066DAFE553F9D6A8885B53D45C0B8735DA930FF553FA24B93AD893D45C0010200000002000000B8735DA930FF553FA24B93AD893D45C03649A0A4F1BC683F167FB05775182DC00102000000020000003649A0A4F1BC683F167FB05775182DC036E5D8B785A56F3F0EFA6E8D7815E0BF01020000000200000036E5D8B785A56F3F0EFA6E8D7815E0BF37B9CA02EF11703FC5CD8EE01C06E03F01020000000200000037B9CA02EF11703FC5CD8EE01C06E03F3F2F19F73F81733F3B6032CA0EEF2C400102000000020000003F2F19F73F81733F3B6032CA0EEF2C40D7F3151406657A3F899BF80F8E3D45400102000000020000003FB97F5583143940587E1B8DBC3D45C03FB97F5583143940A24B93AD893D45C00102000000020000003FB97F5583143940A24B93AD893D45C043B97F5583143940CB876508873D45400102000000020000001CE1CC33CF4E56C0842E3A42CE3F09C09CE61DA7485056C0744C65C3B65309C00102000000020000009CE61DA7485056C0744C65C3B65309C0DB4104A04A5056C0CB53C764D15309C0010200000020000000DB4104A04A5056C0CB53C764D15309C03360A5A62D5556C0E1B6C94DCD9509C05997D7A5AD5B56C07A47E9AD10E609C081E10B874C6256C0FADF986298300AC0A899EA9F076956C04580D86B64750AC0C01A1C46DC6F56C0AF28A8C974B40AC0C8BF48CFC77656C0E3D8077CC9ED0AC0ACE31891C77D56C05491F78262210BC06CE134E1D88456C0725177DE3F4F0BC0F8134515F98B56C0CD19878E61770BC04BD6F182259356C02CEA2693C7990BC06283E37F5B9A56C037C256EC71B60BC02B76C26198A156C063A2169A60CD0BC09E09377ED9A856C0768A669C93DE0BC0B598E92A1CB056C08C7A46F30AEA0BC0647E82BD5DB756C08872B69EC6EF0BC0A415AA8B9BBE56C08872B69EC6EF0BC06FB908EBD2C556C06F7A46F30AEA0BC0B9C4463101CD56C0768A669C93DE0BC077920CB423D456C047A2169A60CD0BC0A27D02C937DB56C037C256EC71B60BC033E1D0C53AE256C0F2E92693C7990BC0201820002AE956C0CD19878E61770BC05D7D98CD02F056C08F5177DE3F4F0BC0E56BE283C2F656C05491F78262210BC0AD3EA67866FD56C000D9077CC9ED0AC0A9508C01EC0357C0AF28A8C974B40AC0DCFC3C74500A57C04580D86B64750AC02C9E6026911057C0DEDF986298300AC09F8F9F6DAB1657C09747E9AD10E609C0222CA29F9C1C57C01AB7C94DCD9509C0B1CE1012622257C0842E3A42CE3F09C00102000000020000001708294FCB1039C0577E1B8DBC3D45C01708294FCB1039C0A24B93AD893D45C00102000000020000001708294FCB1039C0A24B93AD893D45C01708294FCB1039C0CF876508873D4540010200000020000000B1CE1012622257C02CE1052845F70840084A54910C1E57C0C2699533444D0940E02EB7CB541957C022FAB493879D0940C253D085401457C0859264480FE80940488F3684D50E57C00933A451DB2C0A40FDB7808B190957C03ADB73AFEB6B0A407EA44560120357C0C48BD36140A50A404F2B1CC7C5FC56C01844C368D9D80A4008239B8439F656C0530443C4B6060B403562595D73EF56C075CC5274D82E0B4071BFED1579E856C07D9CF2783E510B404B11EF7250E156C0C27422D2E86D0B40512EF438FFD956C00B55E27FD7840B4013ED932C8BD256C01D3D32820A960B4024246512FACA56C0172D12D981A10B401BAAFEAE51C356C0132582843DA70B408155F7C697BB56C0302582843DA70B40EFFCE51ED2B356C0332D12D981A10B40F276617B06AC56C0013D32820A960B401D9A00A13AA456C00B55E27FD7840B40013D5A54749C56C0DF7422D2E86D0B402E36055AB99456C0B79CF2783E510B403A5C98760F8D56C075CC5274D82E0B40B385AA6E7C8556C0530443C4B6060B402C89D206067E56C01844C368D9D80A40323DA703B27656C0A78BD36140A50A405F78BF29866F56C056DB73AFEB6B0A403D11B23D886856C00933A451DB2C0A4060DE1504BE6156C0A29264480FE809405AB681412D5B56C022FAB493879D0940C06F8CBADB5456C0A5699533444D0940DB4104A04A5056C06BE28752570C0940010200000002000000DB4104A04A5056C06BE28752570C09409CE61DA7485056C094417C483B0C09400102000000020000009CE61DA7485056C094417C483B0C09401CE1CC33CF4E56C02CE1052845F70840010200000002000000B1CE1012622257C0842E3A42CE3F09C0B1CE1012622257C02CE1052845F708400102000000030000003A53E8BC06CD5040367870C163E539403A53E8BC06CD50409A728577B9E536403AB324408D984F409A728577B9E5364001020000000300000048809A5AB6CD5140B08394E9E115324048809A5AB6CD51404C897F338C153540E479707776CE52404C897F338C153540010200000002000000D8C03EB6AC4F5640A12E3A42CE3F09C0CD49EF1B1F515640BFDF0387575309C0010200000002000000CD49EF1B1F515640BFDF0387575309C01DBB2CA22D515640BD115AA41B5409C00102000000200000001DBB2CA22D515640BD115AA41B5409C0EF3F17290B565640FEB6C94DCD9509C0137749288B5C56409747E9AD10E609C03FC17D092A63564017E0986298300AC064795C22E56956406180D86B64750AC07EFA8DC8B9705640CB28A8C974B40AC0839FBA51A577564000D9077CC9ED0AC068C38A13A57E56407191F78262210BC028C1A663B68556408F5177DE3F4F0BC0B5F3B697D68C5640EA19878E61770BC00BB663050394564048EA2693C7990BC01E635502399B564054C256EC71B60BC0E55534E475A2564080A2169A60CD0BC05AE9A800B7A95640928A669C93DE0BC06F785BADF9B05640A87A46F30AEA0BC0205EF43F3BB85640A572B69EC6EF0BC062F51B0E79BF5640A572B69EC6EF0BC02B997A6DB0C656408C7A46F30AEA0BC075A4B8B3DECD5640928A669C93DE0BC033727E3601D5564063A2169A60CD0BC0605D744B15DC564054C256EC71B60BC0EFC0424818E356400FEA2693C7990BC0DBF7918207EA5640EA19878E61770BC0195D0A50E0F05640AC5177DE3F4F0BC0A24B5406A0F756407191F78262210BC0691E18FB43FE56401CD9077CC9ED0AC06930FE83C9045740CB28A8C974B40AC098DCAEF62D0B57406180D86B64750AC0EC7DD2A86E115740FADF986298300AC05B6F11F088175740B447E9AD10E609C0E00B14227A1D574037B7C94DCD9509C06FAE82943F235740A12E3A42CE3F09C00102000000020000001CE1CC33CF4E56C02CE1052845F708401CE1CC33CF4E56C0842E3A42CE3F09C00102000000200000006FAE82943F2357400FE1052845F70840C629C613EA1E5740A5699533444D09409B0E294E321A574005FAB493879D09407E3342081E155740699264480FE80940066FA806B30F5740EC32A451DB2C0A40BD97F20DF70957401DDB73AFEB6B0A403A84B7E2EF035740A78BD36140A50A400B0B8E49A3FD5640FC43C368D9D80A40C4020D0717F75640370443C4B6060B40F541CBDF50F0564058CC5274D82E0B40319F5F9856E95640619CF2783E510B4007F160F52DE25640A67422D2E86D0B400D0E66BBDCDA5640EE54E27FD7840B40CFCC05AF68D35640013D32820A960B40E203D794D7CB5640FA2C12D981A10B40D78970312FC45640F72482843DA70B403F35694975BC5640132582843DA70B40ADDC57A1AFB45640172D12D981A10B40AE56D3FDE3AC5640E43C32820A960B40D979722318A55640EE54E27FD7840B40BD1CCCD6519D5640C27422D2E86D0B40EC1577DC969556409A9CF2783E510B40F63B0AF9EC8D564058CC5274D82E0B406F651CF159865640370443C4B6060B40E8684489E37E5640FC43C368D9D80A40F01C19868F7756408B8BD36140A50A401B5831AC637056403ADB73AFEB6B0A40F9F023C065695640EC32A451DB2C0A401EBE87869B625640859264480FE809401996F3C30A5C564005FAB493879D09407C4FFE3CB955564089699533444D09401DBB2CA22D515640E528AB7FA50C09400102000000020000001DBB2CA22D515640E528AB7FA50C0940CD49EF1B1F51564024F64C02D70B0940010200000002000000CD49EF1B1F51564024F64C02D70B0940D8C03EB6AC4F56400FE1052845F708400102000000020000006FAE82943F235740A12E3A42CE3F09C06FAE82943F2357400FE1052845F70840010200000002000000D8C03EB6AC4F56400FE1052845F70840D8C03EB6AC4F5640A12E3A42CE3F09C001020000002000000024A62CBF532F5540B31ADE9525FE0FC04AE5923D092F55406CE9B46790F40FC0F7729245302E5540255DCADDF5D70FC092875EAAD22C5540CC00F8788DA80FC0755B2A3FFA2A55406B5F17BA8E660FC0052729D7B02855400E04022231120FC0A0228E450026554086799131ACAB0EC0A9868C5DF2225540344B9F6937330EC07C8B57F2901F5540B003054B0AA90DC07C6922D7E51B5540772E9C565C0D0DC00C5920DFFA1755405C563E0D65600CC0879284DDD91355401406C5EF5BA20BC0524E82A58C0F55401BC9097F78D30AC0C9C44C0A1D0B5540272AE63BF2F309C0522E17DF9406554099B433A7000409C047C314F7FD01554008F3CB41DB0308C00FBC782562FD5440BA70888CB9F306C00651763DCBF854409BB84208D3D305C08DBA401243F45440D555D4355FA404C006310B77D3EF544055D31696956503C0D0EC083F86EB544026BCE3A9AD1702C04C266D3D65E754401A9B14F2DEBA00C0DA156B457AE3544021F705DFC19EFEBFDAF3352ACFDF5440BAD01046D6AAFBBFAFF800BF6DDC544012D9FC1A6A9AF8BFB65CFFD65FD9544040267D5FEC6DF5BF51586445AFD654405ACE4415CC25F2BFE12363DD65D4544077CE0D7CF084EDBFC4F72E728DD25440F60DEDB6BF88E6BF5E0CFBD62FD154409F0F1BBDC7AFDEBF0E9AFADE56D05440259D55D9EBCCCFBF32D9605D0CD05440D723B66AC0E886BF01020000002000000032D9605D0CD05440D723B66AC0E886BF0E9AFADE56D0544044B2EA777B6DCD3F5E0CFBD62FD15440756A1982C5B8DD3FC4F72E728DD2544035A25ED9AD26E63FE12363DD65D45440BCD4C3588539ED3F51586445AFD6544020D68738170AF23FB65CFFD65FD95440A9C50A2AF75AF53FAFF800BF6DDC54407968D419058FF83FDAF3352ACFDF5440A06FCEA0E3A5FB3FDA156B457AE35440D58AE257359FFE3F4C266D3D65E754407835FD6B4EBD0040D0EC083F86EB54402AE0FF5CDE1B024006310B77D3EF54407A1D6ECB1B6B03408DBA401243F45440D3C5BC03D8AA04400651763DCBF854402DB16052E4DA05400FBC782562FD5440BCB7CE0312FB064047C314F7FD015540CDB17B64320B0840522E17DF940655407577DCC0160B0940C9C44C0A1D0B554004E1656590FA0940524E82A58C0F554090C68C9E70D90A40879284DDD91355402D00C6B888A70B400A5920DFFA17554046668600AA640C407C6922D7E51B5540D5D042C2A5100D407C8B57F2901F55402818704A4DAB0D40A9868C5DF2225540391483E571340E40A0228E45002655408E9DF0DFE4AB0E40052729D7B0285540058C2D8677110F40755B2A3FFA2A554008B8AE24FB640F4092875EAAD22C554091F9E80741A60F40F7729245302E5540ED28517C1AD50F404AE5923D092F55406C1E5CCE58F10F4024A62CBF532F5540EAB17E4ACDFA0F40010200000020000000E22C04BD702E55C0961ADE9525FE0FC0086C6A3B262E55C050E9B46790F40FC0B9F969434D2D55C0095DCADDF5D70FC04E0E36A8EF2B55C0B000F8788DA80FC033E2013D172A55C04F5F17BA8E660FC0C1AD00D5CD2755C0F103022231120FC060A965431D2555C069799131ACAB0EC0650D645B0F2255C0174B9F6937330EC03A122FF0AD1E55C09303054B0AA90DC03AF0F9D4021B55C05B2E9C565C0D0DC0C4DFF7DC171755C040563E0D65600CC044195CDBF61255C0F705C5EF5BA20BC010D559A3A90E55C0FFC8097F78D30AC0894B24083A0A55C00B2AE63BF2F309C010B5EEDCB10555C07CB433A7000409C0054AECF41A0155C0ECF2CB41DB0308C0CD4250237FFC54C09D70888CB9F306C0C4D74D3BE8F754C07FB84208D3D305C04D41181060F354C0B955D4355FA404C0C4B7E274F0EE54C039D31696956503C08C73E03CA3EA54C009BCE3A9AD1702C00AAD443B82E654C0FD9A14F2DEBA00C0989C424397E254C0E8F605DFC19EFEBF987A0D28ECDE54C081D01046D6AAFBBF6B7FD8BC8ADB54C0D9D8FC1A6A9AF8BF72E3D6D47CD854C007267D5FEC6DF5BF0DDF3B43CCD554C021CE4415CC25F2BF9FAA3ADB82D354C005CE0D7CF084EDBF827E0670AAD154C0840DEDB6BF88E6BF1B93D2D44CD054C0BB0E1BBDC7AFDEBFCA20D2DC73CF54C05C9B55D9EBCCCFBFF05F385B29CF54C04C07B66AC0E886BF010200000020000000F05F385B29CF54C04C07B66AC0E886BFCC20D2DC73CF54C00CB4EA777B6DCD3F1E93D2D44CD054C0596B1982C5B8DD3F847E0670AAD154C0A8A25ED9AD26E63F9FAA3ADB82D354C02ED5C3588539ED3F0DDF3B43CCD554C059D68738170AF23F77E3D6D47CD854C0E2C50A2AF75AF53F697FD8BC8ADB54C0B368D419058FF83F9A7A0D28ECDE54C0D96FCEA0E3A5FB3F969C424397E254C00E8BE257359FFE3F06AD443B82E654C09535FD6B4EBD00408C73E03CA3EA54C047E0FF5CDE1B0240C6B7E274F0EE54C0971D6ECB1B6B03404B41181060F354C0EFC5BC03D8AA0440C2D74D3BE8F754C04AB16052E4DA0540CD4250237FFC54C0D8B7CE0312FB0640054AECF41A0155C0E9B17B64320B08400EB5EEDCB10555C09277DCC0160B0940874B24083A0A55C021E1656590FA094010D559A3A90E55C0ACC68C9E70D90A4044195CDBF61255C04900C6B888A70B40C8DFF7DC171755C063668600AA640C403AF0F9D4021B55C0F2D042C2A5100D403A122FF0AD1E55C04518704A4DAB0D40670D645B0F2255C0561483E571340E405EA965431D2555C0AB9DF0DFE4AB0E40C1AD00D5CD2755C0228C2D8677110F4033E2013D172A55C025B8AE24FB640F40500E36A8EF2B55C0ADF9E80741A60F40B5F969434D2D55C00929517C1AD50F40086C6A3B262E55C0881E5CCE58F10F40E22C04BD702E55C006B27E4ACDFA0F40010200000002000000090DFD13DCEC50C0F9C57DF502FD1DC0090DFD13DCEC50C088AFD1CD59FE11C0010200000002000000652D3E05C0AD51C0F9C57DF502FD1DC0652D3E05C0AD51C088AFD1CD59FE11C00102000000020000009CE61DA7485056C09C6A8885B53D45C09CE61DA7485056C083D5FE8BF61745C00102000000020000009CE61DA7485056C083D5FE8BF61745C09CE61DA7485056C0961ADE9525FE0FC00102000000020000009CE61DA7485056C0961ADE9525FE0FC09CE61DA7485056C0744C65C3B65309C00102000000020000009CE61DA7485056C0744C65C3B65309C09CE61DA7485056C094417C483B0C09400102000000020000009CE61DA7485056C094417C483B0C09409CE61DA7485056C006B27E4ACDFA0F400102000000020000009CE61DA7485056C006B27E4ACDFA0F409CE61DA7485056C06A4459C6261845400102000000020000009CE61DA7485056C06A4459C6261845409CE61DA7485056C0899BF80F8E3D454001020000000A00000037B9DFA1A87B5140C47BB372D434424034B213401EAD51405921F1FE403242408A986E80E8DD5140401940999C2A4240DF13B8DBF60D5240326E0132081E4240DACBB7CA383D5240EA2A96B9A40C4240216835C69D6B52402A5A5F2093F641405490F84615995240B006BE56F4DB41401FECC8C58EC552402E3B134DE9BC414026236EBBF9F052406402C0F392994140F2E68F3F7C185340C584047EAC744140010200000018000000F2E68F3F7C185340C584047EAC7441400EDDAFA0451B53401167253B127241407BC155EE61445340F173A413884641401378271D3E6C5340BF339E6D151741407FA8ECA5C992534034B17339DBE3404061FA6C01F4B7534015F78567FAAC4040621570A8ACDB5340111036E89372404023A1BD13E3FD5340EC06E5ABC83440404D451DBC861E5440C0CCE74573E73F4085A9561A873D54405672877B0F5F3F40717531A7D35A544018146BD9A7D03E40B45075DB5B7654406AC754407E3C3E40F8E2E92F0F905440D8A10691D4A23D40DED3561DDDA75440D1B842ACEC033D4010CB831CB5BD5440CA21CB7208603C402F7038A686D1544043F261C569B73B40E56A3C3341E35440AE3FC984520A3B40D462573CD4F25440871FC39104593A40A4FF503A2F00554044A711CDC1A33940FAE8F0A5410B55405EEC7617CCEA38407DC6FEF7FA1355405404B551652E3840CF3F42A94A1A55408B048E5CCF6E374097FC8232201E55409102C4184CAC36407DA4880C6B1F5540CD1319671DE7354001020000001F0000007DA4880C6B1F5540CD1319671DE73540F6B1C336201E5540A23E0DB2F021354007ECB3B94A1A55403FBD32286F5F34402EEDB71BFB1355403DB1AFADDA9F3340E14F2EE3410B5540323CAA2675E332409EAE75962F005540B17F4877802A3240DFA3ECBBD4F25440559DB0833E7531401DCAF1D941E35440ACB60830F1C33040D6BBE37687D1544058ED7660DA16304083132119B6BD5440C6C542F277DC2E409F6B0847DEA75440D6715CBCAF942D40A35EF88610905440102287E7DF562C400E874F5F5D76544096190F3C8C232B40567F6C56D55A5440969B408238FB2940F9E1ADF2883D54403AEB678268DE2840714972BA881E5440A94BD104A0CD274039501834E5FD53402100C9D162C92640CA90FEE5AEDB5340C44B9BB134D225409FA58356F6B75340C171946C99E824403629060CCC92534040B500CB140D244007B6E48C406C534069592C952A4023408CE67D5F6444534073A163935E8222404255300A481B534087D0F28D34D42140A49C5A13FCF05240CD29264D303621402A575B0191C5524073F04999D5A82040501F915A17995240AB67AA3AA82C2040918F5AA59F6B52401AA527F357841F40684216683A3D5240D9E8A43CC9D31E4050D22229F80D52409E2065E2AB481E40C5D9DE6EE9DD5140D5D2007507E41D4057FAD005B5AD5140EC9396D39FA71D4001020000000300000057FAD005B5AD5140EC9396D39FA71D403FF3A8BF1EAD5140F9851085E3A61D4037B9DFA1A87B51404EC02CA347921D4001020000000B00000037B9DFA1A87B51404EC02CA347921D4039C0AB03334A5140A7933F41E3A61D40E3D950C36819514098D4C76E06E41D408D5E07685AE95040FB2CBDA8A9481E4093A6077918BA50401047176CC5D31E404D0A8A7DB38B50400ACDCD3552841F4017E2C6FC3B5E50407E346C41A42C20404E86F67DC231504086621768D0A82040484F518857065040A04564CD29362140C42A1F4617B84F40DCB2CEAF2CD421409C41779D7EB24F40AFF7CB4E07E021400102000000170000009C41779D7EB24F40AFF7CB4E07E02140E861D3AADE654F405C7FD24D55822240B5F42F4D26164F403180EBE51F402340DD93A53B0FC94E40578A95B6080D244019F0A484BA7E4E40E0724CFE8BE824401CBA9E3649374E40F30E8CFB25D2254096A20360DCF24D408533D0EC52C92640425A440F95B14D40A8B594108FCD2740D191D15294734D40826A55A556DE2840F9F91B39FB384D4011278EE925FB2940734394D0EA014D405EC0BA1B79232B40EE1EAB2784CE4C40820B577ACC562C401F3DD14CE89E4C409EDDDE439C942D40BC4E774E38734C40A60BCEB664DC2E407D040E3B954B4C405935D008D1163040120F062120284C40EFE76849E8C33040331FD00EFA084C4012086F3C3675314093E5DC1244EE4B4052802001792A3240E7129D3B1FD84B40383BBBB66EE33240E5578197ACC64B404C237D7CD59F33403E65FA340DBA4B400A23A4716B5F3440ACEB782262B24B4009256EB5EE213540E19B6D6ECCAF4B40CD1319671DE73540010200000020000000E19B6D6ECCAF4B40CD1319671DE73540EF80F71962B24B40FAE8241C4AAC3640CD0C17140DBA4B405A6AFFA5CB6E3740800A0F50ACC64B4060768220602E3840194522C11ED84B406BEB87A7C5EA3840A387935A43EE4B40E9A7E956BAA33940229DA50FF9084C404B8A814AFC583A40A1509BD31E284C40E970299E490A3B40326DB799934B4C40413ABB6D60B73B40D9BD3C5536734C40AFC410D5FE5F3C40A10D6EF9E59E4C40A3EE03F0E2033D4095278E7981CE4C4091966EDACAA23D40C0D6DFC8E7014D40CB9A2AB0743C3E4030E6A5DAF7384D40CED9118D9ED03E40E92023A290734D40FA31FE8C065F3F40F9519A1291B14D40C381C9CB6AE73F4069444E1FD8F24D40C3D3A6B2C434404047C381BB44374E40DC40B23A907240409D9977DAB57E4E405FF7F30BF7AC40406F92726F0AC94E407EE65834D8E34040D078B56D21164F4071FDCDC112174140C31783C8D9654F40712B40C285464140573A1E7312B84F40AD5F9C4310724140CBD56430550650405A89CF5391994140451B6442C0315040B197C600E8BC41401D532EE9395E5040E3796E58F3DB4140DCE2649EB18B5040271FB46892F641400530A9DB16BA5040B276843FA40C42401DA09C1A59E95040B86FCCEA071E4240A998E0D46719514071F978789C2A4240317F1684324A51400C0377F64032424037B9DFA1A87B5140C47BB372D4344240010200000002000000CD49EF1B1F5156409D6A8885B53D45C0CD49EF1B1F515640277EFC11F41745C0010200000002000000CD49EF1B1F515640277EFC11F41745C0CD49EF1B1F515640B31ADE9525FE0FC0010200000002000000CD49EF1B1F515640B31ADE9525FE0FC0CD49EF1B1F515640BFDF0387575309C0010200000002000000CD49EF1B1F515640BFDF0387575309C0CD49EF1B1F51564024F64C02D70B0940010200000002000000CD49EF1B1F51564024F64C02D70B0940CD49EF1B1F515640EAB17E4ACDFA0F40010200000002000000CD49EF1B1F515640EAB17E4ACDFA0F40CD49EF1B1F51564008ED564C24184540010200000002000000CD49EF1B1F51564008ED564C24184540CD49EF1B1F515640899BF80F8E3D45400102000000030000003853E8BC06CD5040769ABB4C03E539C03853E8BC06CD5040DA94D00259E536C03AB324408D984F40DA94D00259E536C00102000000030000003853E8BC06CD5040D840A9AC5C1632C03853E8BC06CD5040744694F6061635C03AB324408D984F40744694F6061635C001020000000300000048809A5AB6CD5140769ABB4C03E539C048809A5AB6CD5140DA94D00259E536C0E479707776CE5240DA94D00259E536C001020000000300000048809A5AB6CD5140D840A9AC5C1632C048809A5AB6CD5140744694F6061635C0E479707776CE5240744694F6061635C00102000000030000003A53E8BC06CD5040B08394E9E11532403A53E8BC06CD50404C897F338C1535403AB324408D984F404C897F338C15354001020000000300000048809A5AB6CD5140367870C163E5394048809A5AB6CD51409A728577B9E53640E479707776CE52409A728577B9E536400102000000030000009BB67F65E5CC51C0B38394E9E11532409BB67F65E5CC51C050897F338C15354039B05582A5CD52C050897F338C1535400102000000030000009BB67F65E5CC51C03A7870C163E539409BB67F65E5CC51C09E728577B9E5364039B05582A5CD52C09E728577B9E536400102000000030000008E89CDC735CC50C0B38394E9E11532408E89CDC735CC50C050897F338C153540E41FEF55EB964FC050897F338C1535400102000000030000008E89CDC735CC50C03A7870C163E539408E89CDC735CC50C09E728577B9E53640E41FEF55EB964FC09E728577B9E536400102000000030000009BB67F65E5CC51C0729ABB4C03E539C09BB67F65E5CC51C0D694D00259E536C039B05582A5CD52C0D694D00259E536C00102000000030000009BB67F65E5CC51C0D440A9AC5C1632C09BB67F65E5CC51C0704694F6061635C039B05582A5CD52C0704694F6061635C00102000000030000008E89CDC735CC50C0729ABB4C03E539C08E89CDC735CC50C0D694D00259E536C0E41FEF55EB964FC0D694D00259E536C00102000000030000008E89CDC735CC50C0D440A9AC5C1632C08E89CDC735CC50C0704694F6061635C0E41FEF55EB964FC0704694F6061635C0010200000002000000FBD98F14D1EC5040A133C40CE8BD43C0FBD98F14D1EC5040E8CFD8EE5E4042C0010200000002000000FBD98F14D1EC5040E8CFD8EE5E4042C0FBD98F14D1EC5040D3B0CEE7123E42C001020000000200000057FAD005B5AD5140A133C40CE8BD43C057FAD005B5AD51409577ACF35E4042C001020000000200000057FAD005B5AD51409577ACF35E4042C057FAD005B5AD5140D3B0CEE7123E42C0010200000002000000FBD98F14D1EC504007C67DF502FD1DC0FBD98F14D1EC504096AFD1CD59FE11C001020000000200000057FAD005B5AD514007C67DF502FD1DC057FAD005B5AD514096AFD1CD59FE11C0010200000002000000652D3E05C0AD51C0A033C40CE8BD43C0652D3E05C0AD51C0D1B0CEE7123E42C0010200000002000000090DFD13DCEC50C0A033C40CE8BD43C0090DFD13DCEC50C0D1B0CEE7123E42C0010200000002000000652D3E05C0AD51C06A11B2E20AFE1140652D3E05C0AD51C04FFDEABDD9681D40010200000002000000652D3E05C0AD51C04FFDEABDD9681D40652D3E05C0AD51C0DC275E0AB4FC1D40010200000002000000090DFD13DCEC50C06A11B2E20AFE1140090DFD13DCEC50C0DD1D47EE86851D40010200000002000000090DFD13DCEC50C0DD1D47EE86851D40090DFD13DCEC50C0DC275E0AB4FC1D40010200000002000000652D3E05C0AD51C05556783CD23D4240652D3E05C0AD51C024D96D61A7BD4340010200000002000000090DFD13DCEC50C05556783CD23D4240090DFD13DCEC50C024D96D61A7BD4340010200000002000000FBD98F14D1EC50405C11B2E20AFE1140FBD98F14D1EC5040CE275E0AB4FC1D4001020000000200000057FAD005B5AD51405C11B2E20AFE114057FAD005B5AD5140EC9396D39FA71D4001020000000200000057FAD005B5AD5140EC9396D39FA71D4057FAD005B5AD51404150E3B526DB1D4001020000000200000057FAD005B5AD51404150E3B526DB1D4057FAD005B5AD5140CE275E0AB4FC1D40010200000002000000FBD98F14D1EC50405256783CD23D4240FBD98F14D1EC504020D96D61A7BD4340010200000020000000296A300D434D514036C35785173E1EC0266364ABB87E514082966A23B3521EC07C49BFEB82AF514064D7F250D68F1EC0D3C4084791DF5140C72FE88A79F41EC0CD7C0836D30E5240EB49424E957F1FC013198631383D52400068FC0B111820C0484149B2AF6A5240ECB581328C8220C0129D193129975240FBE32C59B8FE20C018D4BE2694C252400DC779BE118C21C0008E000CE0EC52405F34E4A0142A22C06E72A659FC155340DF00E83E3DD822C006297888D83D5340A60101D7079623C071593D1164645340CC0BABA7F06224C055ABBD6C8E89534063F461EF733E25C054C6C01347AD53406490A1EC0D2826C015520E7F7DCF5340F6B4E5DD3A1F27C03FF66D2721F053402337AA01772328C0785AA785210F5440EFEB6A963E3429C0632682126E2C544081A8A3DA0D512AC0A601C646F6475440D241D00C61792BC0EB933A9BA9615440FD8C6C6BB4AC2CC0D184A788777954400B5FF43484EA2DC0027CD4874F8F5440168DE3A74C322FC02221891121A3544014F65A01C54130C0D71B8D9EDBB45440A8A8F341DCEE30C0C613A8A76EC45440CCC8F9342AA031C098B0A1A5C9D154401041ABF96C5532C0ED994111DCDC5440F4FB45AF620E33C06F774F6395E5544003E40775C9CA33C0C1F09214E5EB5440C6E32E6A5F8A34C08AADD39DBAEF5440C3E5F8ADE24C35C06F55D97705F1544087D4A35F111236C001020000001F0000006F55D97705F1544087D4A35F111236C0E86214A2BAEF5440B3A9AF143ED736C0F99C0425E5EB5440152B8A9EBF9937C0209E088795E5544016370D19545938C0D4007F4EDCDC544020AC12A0B91539C0905FC601CAD15440A568744FAECE39C0CF543D276FC45440004B0C43F0833AC0107B4245DCB45440A531B4963D353BC0C76C34E221A35440FBFA456654E23BC075C47184508F54406F859BCDF28A3CC0911C59B27879544065AF8EE8D62E3DC0950F49F2AA6154404B57F9D2BECD3DC00038A0CAF74754408A5BB5A868673EC04830BDC16F2C54408A9A9C8592FB3EC0EC92FE5D230F5440B6F28885FA893FC063FAC22523F053403E212A622F0940C02B01699F7FCF53402134ECAE3E4A40C0BD414F5149AD534038A1F7360A8840C09256D4C190895340B957390871C240C028DA567766645340DB469E3052F940C0F86635F8DA3D5340CF5D13BE8C2C41C07E97CECAFE155340CD8B85BEFF5B41C034068175E2EC524009C0E13F8A8741C0944DAB7E96C25240B7E914500BAF41C01B08AC6C2B9752400EF80BFD61D241C042D0E1C5B16A524041DAB3546DF141C08440AB103A3D5240857FF9640C0C42C05BF366D3D40E52400FD7C93B1E2242C04283739492DF514016D011E7813342C0B78A2FDA83AF5140CD59BE74164042C057FAD005B5AD51409577ACF35E4042C001020000000300000057FAD005B5AD51409577ACF35E4042C031A4F92AB97E51406A63BCF2BA4742C0296A300D434D514020DCF86E4E4A42C0010200000003000000296A300D434D514020DCF86E4E4A42C02C71FC6ECD1B5140B48136FBBA4742C0FBD98F14D1EC5040E8CFD8EE5E4042C001020000001F000000FBD98F14D1EC5040E8CFD8EE5E4042C0D68AA12E03EB504099798595164042C07F0F58D3F4BA50408CCE462E823342C0845758E4B28B5040488BDBB51E2242C03FBBDAE84D5D504089BAA41C0D0C42C00A931768D62F50400B6703536EF141C0413747E95C035040899B584963D241C0750044E7E3AF4F40C26205F00CAF41C0A88CC01C4C5B4F4071C76A378C8741C0CDC3748113094F4050D4E90F025C41C09956D1235BB94E401C94E3698F2C41C0C2F54612446C4E409311B93555F940C0FD51465BEF214E407057CB6374C240C0001C400D7EDA4D406D707BE40D8840C07A04A53611964D4048672AA8424A40C026BCE5E5C9544D40BF46399F330940C0B5F37229C9164D4012331274038A3FC0DE5BBD0F30DC4C40CFD4F5D19BFB3EC058A535A71FA54C402588DF3872673EC0D3804CFEB8714C408F629189C8CD3DC0009F72231D424C408679CDA4E02E3DC0A0B018256D164C4082E2556BFC8A3CC06166AF11CAEE4B40FAB2ECBD5DE23BC0F770A7F754CB4B406600547D46353BC0188171E52EAC4B4040E04D8AF8833AC078477EE978914B40FE679CC5B5CE39C0C8743E12547B4B4018AD0110C01539C0C6B9226EE1694B4009C53F4A595938C022C79B0B425D4B4046C51855C39937C0914D1AF996554B4049C34E1140D736C0C6FD0E4501534B4085D4A35F111236C0010200000020000000C6FD0E4501534B4085D4A35F111236C0D4E298F096554B4059FF97AAE44C35C0AE6EB8EA415D4B40F47DBD20638A34C0646CB026E1694B40F4713AA6CECA33C0FDA6C397537B4B40E7FC341F690E33C087E9343178914B406940D36F745532C003FF46E62DAC4B40085E3B7C32A031C085B23CAA53CB4B4066779328E5EE30C013CF5870C8EE4B4012AE0159CE4130C0BA1FDE2B6B164C40454758E35F322FC0866F0FD01A424C4058F371AD97EA2DC07A892F50B6714C4088A39CD8C7AC2CC0A438819F1CA54C400A9B242D74792BC0144847B12CDC4C40041D567320512AC0CD82C478C5164D40AB6C7D73503429C0DEB33BE9C5544D401DCDE6F5872328C04EA6EFF50C964D409681DEC24A1F27C02F25239279DA4D4039CDB0A21C2826C082FB18B1EA214E4035F3A95D813E25C054F413463F6C4E40AD3616BCFC6224C0B5DA564456B94E40DDDA4186129623C0A879249F0E094F40E122798446D822C03C9CBF49475B4F40F451087F1C2A22C07C0D6B37DFAF4F403AAB3B3E188C21C037CCB4AD5A035040E1715F8ABDFE20C010047F54D42F504018E9BF2B908220C0CF93B5094C5D50400854A9EA131820C0F7E0F946B18B5040B4EBCF1E997F1FC01051ED85F3BA5040872390C47BF41EC09B49314002EB5040CCD52B57D78F1EC0233067EFCC1B5140F0883B67B3521EC0296A300D434D514036C35785173E1EC001020000000B00000084CE6BEC12765140ADEA515D653A42407FC79F8A88A7514046908FE9D1374240D7ADFACA52D851402988DE832D3042402D294426610852401BDD9F1C9923424027E14315A3375240D79934A4351242406C7DC1100866524014C9FD0A24FC4140A1A584917F93524099755C4185E141406C015510F9BF52401BAAB1377AC241407238FA0564EB524051715EDE239F41405AF23BEBAF155340FED5C325A3774140F2E68F3F7C185340C584047EAC744140010200000017000000F2E68F3F7C185340C584047EAC744140C6D6E138CC3E5340DAE242FE184C4140608DB367A8665340A9A23C58A61C4140CCBD78F0338D5340212012246CE94040AE0FF94B5EB25340FF6524528BB24040AE2AFCF216D65340FA7ED4D22478404070B6495E4DF85340D6758396593A4040995AA906F11854409AAA241B95F23F40D2BEE264F13754403050C450316A3F40BC8ABDF13D555440EEF1A7AEC9DB3E4001660126C670544041A59115A0473E4045F8757A798A5440AB7F4366F6AD3D402BE9E26747A25440A4967F810E0F3D405DE00F671FB85440A0FF07482A6B3C407C85C4F0F0CB544016D09E9A8BC23B403180C87DABDD5440841D065A74153B402178E3863EED54405EFDFF6626643A40F314DD8499FA54401A854EA2E3AE394047FE7CF0AB05554038CAB3ECEDF53840C8DB8A42650E554027E2F126873938401C55CEF3B414554062E2CA31F1793740E4110F7D8A18554067E000EE6DB73640CAB91457D5195540A3F1553C3FF2354001020000001F000000CAB91457D5195540A3F1553C3FF2354043C74F818A185540791C4A87122D354054014004B5145540199B6FFD906A344079024466650E5540108FEC82FCAA33402C65BA2DAC055540081AE7FB96EE3240E9C301E199FA5440835D854CA23532402AB978063FED54402F7BED58608031406ADF7D24ACDD54408394450513CF304023D16FC1F1CB54402FCBB335FC213040D028AD6320B854407381BC9CBBF22E40EC80949148A25440832DD666F3AA2D40F07384D17A8A5440BDDD0092236D2C405B9CDBA9C770544043D588E6CF392B40A394F8A03F5554403C57BA2C7C112A4046F7393DF3375440E0A6E12CACF42840BE5EFE04F31854405D074BAFE3E327408465A47E4FF85340D6BB427CA6DF264017A68A3019D653407107155C78E82540ECBA0FA160B253406E2D0E17DDFE2440833E9256368D5340E5707A755823244054CB70D7AA6653401615A63F6E562340D9FB09AACE3E5340205DDD3DA29822408F6ABC54B2155340348C6C3878EA2140F1B1E65D66EB524073E59FF7734C2140756CE74BFBBF524020ACC34319BF20409D341DA581935240512324E5EB422040DEA4E6EF09665240741C1B48DFB01F40B557A2B2A43752403360989150001F409FE7AE7362085240F897583733751E4011EF6AB953D851403D4AF4C98E101E4057FAD005B5AD51404150E3B526DB1D4001020000000300000057FAD005B5AD51404150E3B526DB1D408A08350A89A7514053FD03DA6AD31D4084CE6BEC12765140A73720F8CEBE1D4001020000000A00000084CE6BEC12765140A73720F8CEBE1D4086D5374E9D4451400F0B33966AD31D402EEFDC0DD3135140F14BBBC38D101E40DA7393B2C4E3504046A4B0FD30751E40E0BB93C382B450405CBE0AC14C001F409A1F16C81D8650405544C18AD9B01F4064F75247A65850402BF0E5EBE74220409B9B82C82C2C5040251E911214BF20409564DDD2C10050404501DE776D4C21409C41779D7EB24F40AFF7CB4E07E021400102000000180000009C41779D7EB24F40AFF7CB4E07E021405A5537DBEBAC4F40906E485A70EA2140828CEB3FB35A4F40103B4CF8989822404E1F48E2FA0A4F40D73B65906356234077BEBDD0E3BD4E4004460F614C232440B21ABD198F734E40942EC6A8CFFE2440B2E4B6CB1D2C4E4099CA05A669E825402FCD1BF5B0E74D4032EF499796DF2640DB845CA469A64D405C710EBBD2E327406ABCE9E768684D402826CF4F9AF42840932434CECF2D4D40B6E2079469112A400C6EAC65BFF64C400A7C34C6BC392B408449C3BC58C34C4036C7D024106D2C40B867E9E1BC934C404A9958EEDFAA2D4055798FE30C684C404BC74761A8F22E40162F26D069404C4030130DDEF2213040AC391EB6F41C4C40C2C5A51E0ACF3040CD49E8A3CEFD4B40E8E5AB11588031402910F5A718E34B40285E5DD69A353240803DB5D0F3CC4B400E19F88B90EE32407E82992C81BB4B401F01BA51F7AA3340D78F12CAE1AE4B40E100E1468D6A3440461691B736A74B40DF02AB8A102D35407BC68503A1A44B40A3F1553C3FF235400102000000200000007BC68503A1A44B40A3F1553C3FF2354089AB0FAF36A74B40D1C661F16BB7364063372FA9E1AE4B4034483C7BED793740193527E580BB4B403654BFF581393840B26F3A56F3CC4B4041C9C47CE7F5384039B2ABEF17E34B40BB85262CDCAE3940B8C7BDA4CDFD4B401E68BE1F1E643A403A7BB368F31C4C40C04E66736B153B40C897CF2E68404C401B18F84282C23B406FE854EA0A684C4086A24DAA206B3C403B38868EBA934C407DCC40C5040F3D402B52A60E56C34C406B74ABAFECAD3D405D01F85DBCF64C40A178678596473E40C910BE6FCC2D4D40A8B74E62C0DB3E40824B3B3765684D40D40F3B62286A3F40937CB2A765A64D40965F06A18CF23F40036F66B4ACE74D40AD42459D553A4040E0ED9950192C4E40C6AF50252178404033C48F6F8A734E40486692F687B2404009BD8A04DFBD4E406B55F71E69E9404066A3CD02F60A4F405E6C6CACA31C41405D429B5DAE5A4F405E9ADEAC164C4140F1643608E7AC4F4097CE3A2EA177414016EBF07ABF00504047F86D3E229F41409230F08C2A2C50409E0665EB78C241406A68BA33A4585040D0E80C4384E1414029F8F0E81B865040148E525323FC41405245352681B450409FE5222A351242406AB52865C3E35040A5DE6AD598234240F6AD6C1FD21351405A6817632D3042407E94A2CE9C445140FA7115E1D137424084CE6BEC12765140ADEA515D653A4240010200000020000000CF7A3194535651C031CD19F620274240D381FDF5DD2451C0C97257828D2442407D9BA2B513F450C0AD6AA61CE91C42402820595A05C450C09FBF67B5541042402D68596BC39450C05E7CFC3CF1FE4140E5CBDB6F5E6650C09BABC5A3DFE84140B1A318EFE63850C01D5824DA40CE4140E64748706D0C50C09B8C79D035AF4140C32146F504C24FC0D4532677DF8B4140F0ADC22A6D6D4FC082B88BBE5E64414014E5768F341B4FC05EC50A97D4384140E477D3317CCB4EC0308504F1610941400D174920657E4EC0A502DABC27D640404873486910344EC07F48ECEA469F4040473D421B9FEC4DC081619C6BE0644040C525A74432A84DC059584B2F1527404071DDE7F3EA664DC0A16FB44C0CCC3F4000157537EA284DC038155482A8433F402C7DBF1D51EE4CC0F6B637E040B53E40A2C637B540B74CC04C6A214717213E401AA24E0CDA834CC0B644D3976D873D404EC074313E544CC0AF5B0FB385E83C40EBD11A338E284CC0A8C49779A1443C40AC87B11FEB004CC021952ECC029C3B404192A90576DD4BC08FE2958BEBEE3A4062A273F34FBE4BC065C28F989D3D3A40BF6880F799A34BC0224ADED35A88394016964020758D4BC03C8F431E65CF384014DB247C027C4BC02EA78158FE1238406DE89D19636F4BC06DA75A6368533740DC6E1C07B8674BC06EA5901FE5903640101F115322654BC0AAB6E56DB6CB354001020000001E000000101F115322654BC0AAB6E56DB6CB354026049BFEB7674BC080E1D9B889063540FD8FBAF8626F4BC01D60FF2E08443440B38DB234027C4BC01B547CB4738433404CC8C5A5748D4BC00CDF762D0EC83240CF0A373F99A34BC08B22157E190F32404E2049F44EBE4BC033407D8AD7593140CDD33EB874DD4BC08A59D5368AA8304061F05A7EE9004CC06C2087CEE6F62F400141E0398C284CC0810BDCFFA9A52E40C99011DE3B544CC099B7F5C9E15D2D40C1AA315ED7834CC0CC6720F511202C40EF5983AD3DB74CC0515FA849BEEC2A405F6949BF4DEE4CC052E1D98F6AC4294018A4C686E6284DC0EE3001909AA7284029D53DF7E6664DC06C916A12D296274099C7F1032EA84DC0E44562DF94922640764625A09AEC4DC0809134BF669B2540CC1C1BBF0B344EC07DB72D7ACBB124409F151654607E4EC0FBFA99D846D62340FCFB585277CB4EC0259FC5A25C092340F39A26AD2F1B4FC02FE7FCA0904B224087BDC157686D4FC03C168C9B669D2140C62E6D4500C24FC0886FBF5A62FF2040DDDCB5346B0C50C02F36E3A607722040B51480DBE43850C0CD5A8790B4EB1F4072A4B6905C6650C09F305A0EBC161F409DF1FACDC19450C05174D7572D661E40B561EE0C04C450C015AC97FD0FDB1D40090DFD13DCEC50C0DD1D47EE86851D40010200000004000000090DFD13DCEC50C0DD1D47EE86851D40415A32C712F450C05A5E33906B761D40C7406876DD2451C0711143A047391D40CF7A3194535651C0C54B5FBEAB241D40010200000003000000CF7A3194535651C0C54B5FBEAB241D40CC736532C98751C02D1F725C47391D40652D3E05C0AD51C04FFDEABDD9681D4001020000001F000000652D3E05C0AD51C04FFDEABDD9681D40245AC07293B851C00060FA896A761D4078D509CEA1E851C055B8EFC30DDB1D40768D09BDE31752C096D2498729661E40B82987B8484652C073580051B6161F40EE514A39C07352C074F40A9EACEB1F40B7AD1AB839A052C03BA8B07502722040BFE4BFADA4CB52C05B8BFDDA5BFF2040A59E0193F0F552C09FF867BD5E9D21401183A7E00C1F53C01FC56B5B874B2240AD39790FE94653C0EDC584F351092340196A3E98746D53C013D02EC43AD62340F9BBBEF39E9253C0AAB8E50BBEB12440F9D6C19A57B653C0B6542509589B2540BC620F068ED853C0417969FA84922640E4066FAE31F953C06AFB2D1EC19627401D6BA80C321854C037B0EEB288A72840093783997E3554C0CC6C27F757C429404C12C7CD065154C020065429ABEC2A4090A43B22BA6A54C04551F087FE1F2C407695A80F888254C059237851CE5D2D40A88CD50E609854C0615167C496A52E40C9318A9831AC54C076B0391FD4F62F407E2C8E25ECBD54C0CD8A355081A830406C24A92E7FCD54C0F0AA3B43CF5931403CC1A22CDADA54C03323ED07120F324094AA4298ECE554C019DE87BD07C83240138850EAA5EE54C026C649836E8433406701949BF5F454C0E8C57078044434402FBED424CBF854C0E6C73ABC870635401566DAFE15FA54C0AAB6E56DB6CB35400102000000200000001566DAFE15FA54C0AAB6E56DB6CB354090731529CBF854C0D88BF122E3903640A0AD05ACF5F454C03C0DCCAC64533740C5AE090EA6EE54C03D194F27F9123840791180D5ECE554C04C8E54AE5ECF38403470C788DADA54C0C34AB65D5388394076653EAE7FCD54C0252D4E51953D3A40B38B43CCECBD54C0CB13F6A4E2EE3A406E7D356932AC54C022DD8774F99B3B4017D5720B619854C08D67DDDB97443C40332D5A39898254C08191D0F67BE83C403B204A79BB6A54C06F393BE163873D40A648A151085154C0AC3DF7B60D213E40EE40BE48803554C0AC7CDE9337B53E4091A3FFE4331854C0DCD4CA939F433F40090BC4AC33F953C09D2496D203CC3F40CF116A2690D853C030250D3611274040625250D859B653C0499218BEDC6440403967D548A19253C0CC485A8F439F4040CEEA57FE766D53C0EE37BFB724D640409F77367FEB4653C0E24E34455F09414024A8CF510F1F53C0DE7CA645D2384140DA1682FCF2F552C01BB102C75C6441403C5EAC05A7CB52C0C7DA35D7DD8B4140C018ADF33BA052C01EE92C8434AF4140E8E0E24CC27352C053CBD4DB3FCE41402751AC974A4652C097701AECDEE841400204685AE51752C023C8EAC2F0FE4140EA93741BA3E851C029C1326E541042405C9B306194B851C0DE4ADFFBE81C4240D4B4FAB1C98751C07A54DD798D244240CF7A3194535651C031CD19F6202742400102000000200000003FB83B6B374651C0E225D75E55D71DC044BF07CDC11451C03BF9E9FCF0EB1DC0EED8AC8CF7E350C00F3A722A14291EC0975D6331E9B350C08F926764B78D1EC09CA56342A78450C096ACC127D3181FC05709E646425650C09E3278F15FC91FC022E122C6CA2850C04867411F2B4F20C0AD0AA58EA2F84FC04995EC4557CB20C0A19C5AA3CCA14FC06A7839ABB05821C0D128D7D8344D4FC0B5E5A38DB3F621C0F55F8B3DFCFA4EC035B2A72BDCA422C0C5F2E7DF43AB4EC0FFB2C0C3A66223C0EE915DCE2C5E4EC025BD6A948F2F24C02AEE5C17D8134EC0B5A521DC120B25C029B856C966CC4DC0BA4161D9ACF425C0A6A0BBF2F9874DC04C66A5CAD9EB26C05358FCA1B2464DC075E869EE15F027C0E18F89E5B1084DC04C9D2A83DD0029C00AF8D3CB18CE4CC0D35963C7AC1D2AC084414C6308974CC028F38FF9FF452BC0FB1C63BAA1634CC0533E2C5853792CC02F3B89DF05344CC06010B42123B72DC0CC4C2FE155084CC0693EA394EBFE2EC08D02C6CDB2E04BC0BECEBA77142830C0230DBEB33DBD4BC0518153B82BD530C0441D88A1179E4BC077A159AB798631C0A0E394A561834BC0BA190B70BC3B32C0F71055CE3C6D4BC0A0D4A525B2F432C0F655392ACA5B4BC0AEBC67EB18B133C04E63B2C72A4F4BC073BC8EE0AE7034C0BDE930B57F474BC06EBE5824323335C0F2992501EA444BC032AD03D660F835C0010200000020000000F2992501EA444BC032AD03D660F835C0007FAFAC7F474BC05E820F8B8DBD36C0DE0ACFA62A4F4BC0BE03EA140F8037C09108C7E2C95B4BC0C30F6D8FA33F38C02D43DA533C6D4BC0CE84721609FC38C0B0854BED60834BC04E41D4C5FDB439C0329B5DA2169E4BC0AB236CB93F6A3AC0B24E53663CBD4BC0500A140D8D1B3BC0436B6F2CB1E04BC0A6D3A5DCA3C83BC0E3BBF4E753084CC0195EFB4342713CC0AB0B268C03344CC01188EE5E26153DC0A225460C9F634CC0F22F59490EB43DC0D0D4975B05974CC03334151FB84D3EC040E45D6D15CE4CC03573FCFBE1E13EC0F91EDB34AE084DC061CBE8FB49703FC0075052A5AE464DC0261BB43AAEF83FC07A4206B2F5874DC076201C6A663D40C058C1394E62CC4DC08D8D27F2317B40C0AA972F6DD3134EC0104469C398B540C080902A02285E4EC03033CEEB79EC40C0DD766D003FAB4EC0264A4379B41F41C0D4153B5BF7FA4EC02278B579274F41C06838D605304D4FC05EAC11FBB17A41C0A8A981F3C7A14FC00DD6440B33A241C09B3480179EF84FC062E43BB889C541C026528AB2C82850C096C6E30F95E441C0E3E1C067405650C0DA6B292034FF41C00E2F05A5A58450C065C3F9F6451542C0269FF8E3E7B350C06BBC41A2A92642C0B1973C9EF6E350C02346EE2F3E3342C0377E724DC11451C0BF4FECADE23A42C03FB83B6B374651C075C8282A763D42C00102000000200000003FB83B6B374651C075C8282A763D42C03EB16F09AD7751C00A6E66B6E23A42C09497CA4977A851C0EF65B5503E3342C0E91214A585D851C0E2BA76E9A92642C0E4CA1394C70752C09D770B71461542C02767918F2C3652C0DFA6D4D734FF41C05F8F5410A46352C05F53330E96E441C028EB248F1D9052C0DF8788048BC541C03022CA8488BB52C0174F35AB34A241C014DC0B6AD4E552C0C6B39AF2B37A41C07EC0B1B7F00E53C0A6C019CB294F41C01C7783E6CC3653C072801325B71F41C087A7486F585D53C0E8FDE8F07CEC40C06AF9C8CA828253C0C543FB1E9CB540C06814CC713BA653C0C25CAB9F357B40C02BA019DD71C853C09E535A636A3D40C05544798515E953C02866D2B4B6F83FC08EA8B2E3150854C0BF0B72EA52703FC07B748D70622554C079AD5548EBE13EC0BE4FD1A4EA4054C0CF603FAFC14D3EC001E245F99D5A54C03A3BF1FF17B43DC0E8D2B2E66B7254C031522D1B30153DC018CADFE5438854C02BBBB5E14B713CC0386F946F159C54C0A58B4C34ADC83BC0EF6998FCCFAD54C011D9B3F3951B3BC0DD61B30563BD54C0EAB8AD00486A3AC0ACFEAC03BECA54C0AB40FC3B05B539C004E84C6FD0D554C0C58561860FFC38C085C55AC189DE54C0B59D9FC0A83F38C0D73E9E72D9E454C0F49D78CB128037C0A0FBDEFBAEE854C0F69BAE878FBD36C086A3E4D5F9E954C032AD03D660F835C001020000002000000086A3E4D5F9E954C032AD03D660F835C0FFB01F00AFE854C002D8F720343335C011EB0F83D9E454C0A2561D97B27034C036EC13E589DE54C0A04A9A1C1EB133C0EB4E8AACD0D554C095D59495B8F432C0A5ADD15FBECA54C0171933E6C33B32C0E9A2488563BD54C0B6369BF2818631C024C94DA3D0AD54C01350F39E34D530C0DDBA3F40169C54C0BD8661CF1D2830C088127DE2448854C09AF817D0FEFE2EC0A46A64106D7254C0AEA4319A36B72DC0AB5D54509F5A54C0DE545CC566792CC01486AB28EC4054C0604CE41913462BC05E7EC81F642554C060CE1560BF1D2AC003E109BC170854C0001E3D60EF0029C07948CE8317E953C0777EA6E226F027C0414F74FD73C853C0F3329EAFE9EB26C0D38F5AAF3DA653C08E7E708FBBF425C0A9A4DF1F858253C087A4694A200B25C03E2862D55A5D53C003E8D5A89B2F24C010B54056CF3653C0338C0173B16223C096E5D928F30E53C03DD43871E5A422C04C548CD3D6E552C04A03C86BBBF621C0AC9BB6DC8ABB52C0905CFB2AB75821C03156B7CA1F9052C03D231F775CCB20C0591EED23A66352C06E9A7F182F4F20C0988EB66E2E3652C0CA0AD2AE65C91FC073417231C90752C05F4E4FF8D6181FC05AD17EF286D851C032860F9EB98D1EC0CBD83A3878A851C07738AB3015291EC045F20489AD7751C09CEBBA40F1EB1DC03FB83B6B374651C0E225D75E55D71DC00102000000200000006808963C410F5140D44841737A0136C04A11C95B570F51400CCC6E7147F435C044CE2AFD980F5140D17DF15B42E735C0E032680605105140CC42AA986FDA35C0A3322E5D9A105140A2FF798DD3CD35C010C129E757115140F49841A072C135C0ADD1078A3C1251406DF3E13651B535C00058752B47135140B7F33BB773A935C08E471FB176145140747E3087DE9D35C0DE93B200CA1551404878A00C969235C07330DCFF3F175140E1C56CAD9E8735C0D2104994D7185140DA4B76CFFC7C35C08228A6A38F1A5140E4EE9DD8B47235C0086BA013671C5140A193C42ECB6835C0EBCBE4C95C1E5140B41ECB37445F35C0AF3E20AC6F205140C9749259245635C0D9B6FF9F9E225140877AFBF96F4D35C0EE27308BE82451408C14E77E2B4535C074855E534C2751408627364E5B3D35C0F1C237DEC82951401898C9CD033635C0E9D368115D2C5140EB4A8263292F35C0E2AB9ED2072F5140A1244175D02835C0633E8607C8315140E709E768FD2235C0EE7ECC959C3451405CDF54A4B41D35C00C611E6384375140A9896B8DFA1835C040D828557E3A51407AED0B8AD31435C011D89851893D51406DEF1600441135C002541B3EA440514028746D55500E35C09C3F5D00CE4351405C60F0EFFC0B35C0618E0B7E05475140A39880354E0A35C0D633D39C494A5140A801FF8B480935C084236142994D514015804C59F00835C001020000002000000084236142994D514015804C59F00835C0D7A827DAE8505140CD422A8A480935C0B15FF6EC2C545140061D6C2E4E0A35C079B7626064575140E6E98EE0FC0B35C0911F021A8E5A514088840F3B500E35C063076AFFA85D51400EC86AD8431135C051DE2FF6B3605140938F1D53D31435C0C613E9E3AD6351403CB6A445FA1835C025172BAE9566514022177D4AB41D35C0D5578B3A6A6951406E8D23FCFC2235C03B459F6E2A6C514037F414F5CF2835C0BE4EFC2FD56E51409F26CECF282F35C0C3E3376469715140C6FFCB26033635C0B273E7F0E5735140CA5A8B945A3D35C0F06DA0BB49765140CC1289B32A4535C0E341F8A993785140ED02421E6F4D35C0F35E84A1C27A51404B06336F235635C08134DA87D57C514002F8D840435F35C0F9318F42CB7E514037B3B02DCA6835C0BDC638B7A2805140091337D0B37235C033626CCB5A82514092F2E8C2FB7C35C0C473BF64F2835140F72C43A09D8735C0D56AC76868855140569DC202959235C0CCB619BDBB865140CC1EE484DD9D35C00DC74B47EB8751407D8C24C172A935C0010BF3ECF588514086C1005250B535C00EF2A493DA8951400799F5D171C135C097EBF620988A51401CEE7FDBD2CD35C003677E7A2D8B5140E99B1C096FDA35C0BCD3D085998B51408F7D48F541E735C021A18328DB8B5140276E803A47F435C0A03E2C48F18B5140D44841737A0136C0010200000020000000A03E2C48F18B5140D44841737A0136C05BA9FA28DB8B51409DC51375AD0E36C0A9159D87998B5140D513918AB21B36C0B345667E2D8B5140DB4ED84D852836C09EFBA827988A514009920859213536C094F9B79DDA895140B4F84046824136C0BB01E6FAF58851403A9EA0AFA34D36C03FD68559EB875140F09D462F815936C04339EAD3BB8651403613525F166536C0F5EC6584688551406219E2D95E7036C076B34B85F2835140CCCB1539567B36C0F54EEEF05A825140CD450C17F88536C09681A0E1A2805140C6A2E40D409036C0820DB571CB7E51400AFEBDB7299A36C0DFB47EBBD57C5140F572B7AEB0A336C0DA3950D9C27A5140E01CF08CD0AC36C0975E7CE593785140241787EC84B536C03EE555FA497651401D7D9B67C9BD36C0FB8F2F32E6735140216A4C9899C536C0F1205CA7697151408FF9B818F1CC36C04B5A2E74D56E5140BE460083CBD336C030FEF8B22A6C5140046D417124DA36C0C9CE0E7E6A695140C2879B7DF7DF36C03C8EC2EF956651404BB22D4240E536C0B4FE6622AE635140FC071759FAE936C058E24E30B46051402FA4765C21EE36C050FBCC33A95D51403EA26BE6B0F136C0C20B34478E5A51407D1D1591A4F436C0DAD5D684645751404F3192F6F7F636C0BC1B08072D54514006F901B1A6F836C0939F1AE8E85051400090835AACF936C084236142994D51409411368D04FA36C001020000002000000084236142994D51409411368D04FA36C0319E9AAA494A514053185E5CACF936C058E7CB9705475140F6D42CB8A6F836C08F8F5F24CE43514017442406F8F636C07727C06AA44051404162C6ABA4F436C0A73F5885893D5140122C950EB1F136C0B768928E7E3A51401A9E129421EE36C04333D9A084375140F4B4C0A1FAE936C0E32F97D69C345140306D219D40E536C035EF364AC83151406BC3B6EBF7DF36C0CF012316082F51402EB402F324DA36C04BF8C5545D2C5140153C8718CCD336C045638A20C9295140BC57C6C1F1CC36C056D3DA934C275140AC0342549AC536C018D921C9E8245140833C7C35CABD36C02505CADA9E225140D2FEF6CA85B536C015E83DE36F2051403547347AD1AC36C08712E8FC5C1E51403912B6A8B1A336C011153342671C51407A5CFEBB2A9A36C04B8089CD8F1A514086228F19419036C0D5E455B9D7185140FA60EA26F98536C044D302204017514066149249577B36C033DCFA1BCA155140643908E75F7036C03C90A8C77614514086CCCE64176536C0FC7F763D4713514063CA6728825936C0073CCF973C125140912F5597A44D36C0FC541DF157115140A4F81817834136C0735BCB639A1051402D22350D223536C005E0430A05105140CAA82BDF852836C04E73F1FE980F51400E897EF2B21B36C0E7A53E5C570F514088BFAFACAD0E36C06808963C410F5140D44841737A0136C00102000000200000005EDC783D490C5140F026556187053640A271AA5C5F0C5140B8A32763BA123640550508FEA00C5140F5F1A478BF1F36404CD53E070D0D5140F92CEC3B922C3640621FFC5DA20D514026701C472E3936406B21EDE75F0E5140CED654348F4536404319BF8A440F5140567CB49DB0513640C0441F2C4F1051400A7C5A1D8E5D3640BAE1BAB17E11514050F1654D236936400A2E3F01D21251407CF7F5C76B7436408767590048145140E2A92927637F364009CCB694DF155140EB232005058A3640699904A497175140E080F8FB4C9436407E0DF0136F19514023DCD1A5369E36401E6626CA641B51401051CB9CBDA7364024E154AC771D5140FAFA037BDDB0364068BC28A0A61F514040F59ADA91B93640BF354F8BF02151403C5BAF55D6C13640048B7553542451403F486086A6C936400EFA48DED0265140ABD7CC06FED03640B4C0761165295140D7241471D8D73640CF1CACD20F2C5140234B555F31DE3640354C9607D02E5140DE65AF6B04E43640C18CE295A4315140669041304DE93640491C3E638C34514018E62A4707EE3640A63856558637514049828A4A2EF23640AF1FD851913A514056807FD4BDF536403C0F713EAC3D514098FB287FB1F836402545CE00D6405140650FA6E404FB364043FF9C7E0D4451401ED7159FB3FC36406D7B8A9D514751401A6E9748B9FD364079F74343A14A5140AEEF497B11FE364001020000002000000079F74343A14A5140AEEF497B11FE3640CE7C0ADBF04D5140F82C6C4AB9FD3640A833D9ED34515140BB522AA6B3FC36406E8B45616C545140E08507F404FB364086F3E41A965751403CEB8699B1F8364058DB4C00B15A5140B4A72BFCBDF5364047B212F7BB5D514035E078812EF23640BCE7CBE4B560514087B9F18E07EE36401AEB0DAF9D6351409F58198A4DE93640CA2B6E3B7266514053E272D804E436403019826F32695140877B81DF31DE3640B322DF30DD6B51402949C804D9D73640B8B71A65716E5140FD6FCAADFED03640A747CAF1ED705140F9140B40A7C93640E64183BC51735140F85C0D21D7C13640D915DBAA9B755140D66C54B692B93640E83267A2CA7751407B696365DEB036407608BD88DD795140BE77BD93BEA73640EE057243D37B514091BCE5A6379E3640B29A1BB8AA7D5140BF5C5F044E94364029364FCC627F5140327DAD11068A3640BA47A265FA805140D0425334647F3640CC3EAA69708251406ED2D3D16C743640C28AFCBDC3835140F850B24F24693640049B2E48F384514047E371138F5D3640F6DED5EDFD8551403FAE9582B151364003C68794E2865140BCD6A002904536408CBFD921A0875140A88116F92E393640F93A617B35885140DBD379CB922C3640B1A7B386A188514033F24DDFBF1F364018756629E38851409D01169ABA12364097120F49F9885140F02655618705364001020000002000000097120F49F9885140F026556187053640B309DC29E388514028AA825F54F83540B94C7A88A1885140F25B054A4FEB35401DE83C7F35885140E720BE867CDE35405BE87628A0875140BADD8D7BE0D13540EF597B9EE28651400E77558E7FC5354051499DFBFD8551408AD1F5245EB93540FFC22F5AF3845140D3D14FA580AD35406FD385D4C38351408D5C4475EBA135402287F284708251406056B4FAA29635408EEAC885FA805140F7A3809BAB8B35402D0A5CF1627F5140F5298ABD098135407CF2FEE1AA7D514000CDB1C6C1763540F5AF0472D37B5140B971D81CD86C3540124FC0BBDD795140D0FCDE255163354050DC84D9CA775140E252A647315A35402764A5E59B755140A0580FE87C51354012F374FA51735140A8F2FA6C384935408B954632EE705140A1054A3C684135400F586DA7716E51403576DDBB103A354016473C74DD6B514005299651363335401D6F06B332695140BD025563DD2C35409DDC1E7E7266514002E8FA560A273540119CD8EF9D6351407ABD6892C1213540F3B98622B6605140C8677F7B071D3540BF427C30BC5D514093CB1F78E0183540EF420C34B15A514083CD2AEE50153540FCC6894796575140445281435D12354063DB47856C545140743E04DE09103540A08C990735515140BB7694235B0E354029E7D1E8F04D5140C2DF127A550D354079F74343A14A51402F5E6047FD0C354001020000002000000079F74343A14A51402F5E6047FD0C354026727DAB514751406F573878550D35404DBBAE980D445140CB9A691C5B0E354086634225D6405140AE2B72CE091035406CFBA26BAC3D5140830DD0285D1235409C133B86913A5140B44301C650153540AC3C758F86375140ACD18340E01835403907BCA18C345140CDBAD532071D3540DA037AD7A431514093027537C12135402AC3194BD02E514059ACDFE809273540C4D50517102C514092BB93E1DC2C354042CCA85565295140AF330FBC353335403A376D21D12651400B18D012103A35404BA7BD94542451401A6C5480674135400DAD04CAF021514041331A9F374935401AD9ACDBA61F5140F0709F097C5135400DBC20E4771D51408E28625A305A35407EE6CAFD641B51408C5DE02B5063354006E915436F1951404D139818D76C354042546CCE971751403E4D07BBC0763540CAB838BADF155140CA0EACAD0881354039A7E520481451405F5B048BAA8B354029B0DD1CD212514062368EEDA196354033648BC87E1151403BA3C76FEAA13540F153593E4F1051405EA52EAC7FAD3540FC0FB298440F51403240413D5DB93540F12800F25F0E514020777DBD7EC53540682FAE64A20D5140984D61C7DFD13540FAB3260B0D0D5140FAC66AF57BDE35404347D4FFA00C5140B6E617E24EEB3540DC79215D5F0C51403CB0E62754F835405EDC783D490C5140F026556187053640010200000020000000D0CC4A28F71233404605F3FC0EFB3540DE2111A54F1333401282C5FE41083640A570872A561433404BD042144715364083B0624F061633404F0B8AD719223640D8D857AA5B183340794EBAE2B52E364007E11BD2511B334021B5F2CF163B364064C0635DE41E3340AC5A523938473640566EE4E20E233340605AF8B81553364042E252F9CC273340A6CF03E9AA5E3640821364371A2D3340CED59363F369364078F9CC33F23233403888C7C2EA7436407C8B4285503933403D02BEA08C7F3640FCC079C230403340365F9697D4893640509127828E47334076BA6F41BE933640CFF3005B654F3340632F6938459D3640E8DFBAE3B057334050D9A11665A63640F64C0AB36C60334092D3387619AF36405132A45F946933408B394DF15DB7364068873D80237333409126FE212EBF36408A438BAB157D334001B66AA285C63640295E4278668733402A03B20C60CD364092CE177D119233407929F3FAB8D336402C8CC050129D334030444D078CD93640598EF18964A83340BC6EDFCBD4DE364079CC5FBF03B433406EC4C8E28EE33640EC3DC087EBBF33409F6028E6B5E7364013DAC77917CC3340A85E1D7045EB364044982B2C83D83340EED9C61A39EE3640EC6FA0352AE53340BBED43808CF036406358DB2C08F2334074B5B33A3BF23640084991A818FF3340704C35E440F336403E39773F570C344004CEE71699F336400102000000200000003E39773F570C344004CEE71699F336408A4E919E95193440C7D40FE640F33640F829CCE9A52634406B91DE413BF236400E897DB7833334408800D68F8CF036406F29FB9D2A403440B71E783539EE3640BAC89A33964C34407EE8469845EB36407024B20EC25834408E5AC41DB6E7364045FA96C5A96434405F71722B8FE33640BE079FEE48703440A429D326D5DE36407E0A20209B7B3440D67F68758CD936401DC06FF09B8634409970B47CB9D3364024E6E3F54691344084F838A260CD36403A3AD2C6979B34402814784B86C63640F97990F989A5344018C0F3DD2EBF3640F062742419AF3440F1F82DBF5EB73640BFB2D3DD40B8344046BBA8541AAF3640F52604BCFCC03440A403E60366A63640337D5B5548C93440AACE6732469D36400B732F401FD13440ED18B045BF9336401FC6D5127DD83440F8DE40A3D5893640FF33A4635DDF34406C1D9CB08D7F3640407AF0C8BBE53440D8D043D3EB743640815610D993EB3440DBF5B970F46936405C86592AE1F03440FB8880EEAB5E364064C721539FF53440D88619B21653364035D7BEE9C9F9344004EC062139473640637386845CFD344012B5CAA0173B36408259CEB952003540A2DEE696B62E36403847EC1FA80235403F65DD681A2236401AFA354D580435407C45307C47153640B72F01D85E053540FA7B613642083640ADA5A356B70535404605F3FC0EFB3540010200000020000000ADA5A356B70535404605F3FC0EFB35402682D7D95E053540818820FBDBED3540368E505458043540483AA3E5D6E03540C6FB5A2FA80235403DFF5B2204D43540C1FC42D45200354013BC2B1768C7354011C354AC5CFD34406455F32907BB35409980DC20CAF93440E0AF93C0E5AE35404E67269B9FF5344025B0ED4008A3354012A97E84E1F03440EA3AE21073973540DC77314694EB3440B63452962A8C354089058B49BCE5344049821E37338135400584D7F75DDF34404B08285991763540442563BA7DD8344056AB4F62496C35402E1B7AFA1FD134400F5076B85F623540A397682149C9344026DB7CC1D858354094CC7A98FDC034403C3144E3B84F3540F0EBFCC841B83440F636AD83044735409C273B1C1AAF3440FAD09808C03E354080B181FB8AA53440FBE3E7D7EF36354090BB1CD0989B34408F547B57982F3540AC775803489134405B0734EDBD283540C41781FE9C86344013E1F2FE64223540C8CDE22A9C7B344058C698F2911C354099CBC9F149703440CC9B062E491735401F4382BCAA6434401E461D178F123540516658F4C2583440E9A9BD13680E354010679802974C3440DDABC889D80A354045778E502B4034409A301FDFE4073540E6C8864784333440CA1CA27991053540D48DCD50A6263440115532BFE2033540F8F7AED59519344018BEB015DD0235403E39773F570C3440853CFEE2840235400102000000200000003E39773F570C3440853CFEE284023540EF235DE018FF33403EFFDB13DD0235408948229508F233407BD91DB8E20335406FE970C72AE5334056A6406A910535400E49F3E083D83340FA40C1C4E4073540C6A9534B18CC33407E841C62D80A3540054E3C70ECBF3340054CCFDC670E3540387857B904B43340A87256CF8E123540BB6A4F9065A8334097D32ED4481735400268CE5E139D3340DC49D585911C35406AB27E8E12923340A1B0C67E642235405C8C0A89678733400DE37F59BD28354042381CB8167D334032BC7DB0972F354083F85D85247333403A173D1EEF3635408D0F7A5A956933403ECF3A3DBF3E3540C2BF1AA16D6033405DBFF3A7034735408B4BEAC2B1573340BBC2E4F8B74F354046F59229664F334074B48ACAD75835406EFFBE3E8F473340A96F62B75E6235405EAC186C314033407ACFE859486C3540813E4A1B5139334004AF9A4C9076354039F8FDB5F232334067E9F42932813540F81BDEA51A2D3340C859748C298C354020EC9454CD2733403EDB950E7297354019ABCC2B0F233340EF48D64A07A335404B9B2F95E41E3340F77DB2DBE4AE35401EFF67FA511B33407755A75B06BB3540F71820C55B18334091AA316567C73540412B025F061633405E58CE9203D435406378B83156143340FC39FA7ED6E03540C642EDA64F133340992A32C4DBED3540D0CC4A28F71233404605F3FC0EFB3540010200000020000000D0CC4A28F712334070764019B0FB35C0DE2111A54F133340A6F96D177DEE35C0A570872A561433406DABF00178E135C083B0624F061633406670A93EA5D435C0D8D857AA5B1833403A2D793309C835C007E11BD2511B334090C64046A8BB35C064C0635DE41E33400A21E1DC86AF35C0566EE4E20E23334053213B5DA9A335C042E252F9CC2733400EAC2F2D149835C0821364371A2D3340E4A59FB2CB8C35C078F9CC33F23233407CF36B53D48135C07C8B42855039334077797575327735C0FCC079C230403340801C9D7EEA6C35C0509127828E4733403BC1C3D4006335C0CFF3005B654F3340504CCADD795935C0E8DFBAE3B057334064A291FF595035C0F64C0AB36C60334021A8FA9FA54735C05132A45F946933402842E624613F35C068873D8023733340215535F4903735C08A438BAB157D3340B5C5C873393035C0295E427866873340877881095F2935C092CE177D119233403F52401B062335C02C8CC050129D33408237E60E331D35C0598EF18964A83340FA0C544AEA1735C079CC5FBF03B4334049B76A33301335C0EC3DC087EBBF3340141B0B30090F35C013DAC77917CC3340091D16A6790B35C044982B2C83D83340C4A16CFB850835C0EC6FA0352AE53340F68DEF95320635C06358DB2C08F233403FC67FDB830435C0084991A818FF3340462FFE317E0335C03E39773F570C3440B0AD4BFF250335C00102000000200000003E39773F570C3440B0AD4BFF250335C08A4E919E95193440677029307E0335C0F829CCE9A5263440A04A6BD4830435C00E897DB78333344083178E86320635C06F29FB9D2A40344025B20EE1850835C0BAC89A33964C3440A8F5697E790B35C07024B20EC25834402DBD1CF9080F35C045FA96C5A9643440D7E3A3EB2F1335C0BE079FEE48703440C0447CF0E91735C07E0A20209B7B344009BB22A2321D35C01DC06FF09B863440D221149B052335C024E6E3F5469134403954CD755E2935C03A3AD2C6979B3440602DCBCC383035C0F97990F989A5344066888A3A903735C0F062742419AF344068408859603F35C0BFB2D3DD40B834408A3041C4A44735C0F52604BCFCC03440E5333215595035C0337D5B5548C93440A025D8E6785935C00B732F401FD13440D3E0AFD3FF6235C01FC6D5127DD83440A3403676E96C35C0FF33A4635DDF34402E20E868317735C0407AF0C8BBE53440925A4246D38135C0815610D993EB3440F2CAC1A8CA8C35C05C86592AE1F034406A4CE32A139835C064C721539FF5344019BA2367A8A335C035D7BEE9C9F9344022EFFFF785AF35C0637386845CFD3440A1C6F477A7BB35C08259CEB952003540B81B7F8108C835C03847EC1FA802354087C91BAFA4D435C01AFA354D580435402BAB479B77E135C0B72F01D85E053540C19B7FE07CEE35C0ADA5A356B705354070764019B0FB35C0010200000020000000ADA5A356B705354070764019B0FB35C02682D7D95E05354037F3121BE30836C0368E50545804354071419030E81536C0C6FB5A2FA8023540777CD7F3BA2236C0C1FC42D452003540A5BF07FF562F36C011C354AC5CFD3440542640ECB73B36C09980DC20CAF93440D2CB9F55D94736C04E67269B9FF534408DCB45D5B65336C012A97E84E1F03440D04051054C5F36C0DC77314694EB3440FC46E17F946A36C089058B49BCE5344067F914DF8B7536C00584D7F75DDF344069730BBD2D8036C0442563BA7DD8344062D0E3B3758A36C02E1B7AFA1FD13440A52BBD5D5F9436C0A397682149C9344090A0B654E69D36C094CC7A98FDC034407C4AEF3206A736C0F0EBFCC841B83440C1448692BAAF36C09C273B1C1AAF3440B6AA9A0DFFB736C080B181FB8AA53440BF974B3ECFBF36C090BB1CD0989B34402B27B8BE26C736C0AC775803489134405B74FF2801CE36C0C41781FE9C863440A19A40175AD436C0C8CDE22A9C7B34405EB59A232DDA36C099CBC9F149703440E6DF2CE875DF36C01F4382BCAA643440983516FF2FE436C0516658F4C2583440CDD1750257E836C010679802974C3440D9CF6A8CE6EB36C045778E502B403440194B1437DAEE36C0E6C8864784333440E95E919C2DF136C0D48DCD50A6263440A3260157DCF236C0F8F7AED5951934409ABD8200E2F336C03E39773F570C3440303F35333AF436C00102000000200000003E39773F570C3440303F35333AF436C0EF235DE018FF3340EF455D02E2F336C08948229508F2334092022C5EDCF236C06FE970C72AE53340B17123AC2DF136C00E49F3E083D83340DD8FC551DAEE36C0C6A9534B18CC3340AE5994B4E6EB36C0054E3C70ECBF3340B6CB113A57E836C0387857B904B4334090E2BF4730E436C0BB6A4F9065A83340CA9A204376DF36C00268CE5E139D334003F1B5912DDA36C06AB27E8E12923340CCE101995AD436C05C8C0A8967873340AF6986BE01CE36C042381CB8167D33405585C56727C736C083F85D8524733340493141FACFBF36C08D0F7A5A956933401D6A7BDBFFB736C0C2BF1AA16D603340702CF670BBAF36C08B4BEAC2B1573340D074332007A736C046F59229664F3340D63FB54EE79D36C06EFFBE3E8F473340148AFD61609436C05EAC186C3140334022508EBF768A36C0813E4A1B51393340968EE9CC2E8036C039F8FDB5F2323340034291EF8C7536C0F81BDEA51A2D33400067078D956A36C020EC9454CD27334024FACD0A4D5F36C019ABCC2B0F233340FFF766CEB75336C04B9B2F95E41E33402E5D543DDA4736C01EFF67FA511B3340402618BDB83B36C0F71820C55B183340C94F34B3572F36C0412B025F0616334068D62A85BB2236C06378B83156143340AAB67D98E81536C0C642EDA64F13334024EDAE52E30836C0D0CC4A28F712334070764019B0FB35C00102000000200000000AB1E8ADAC0E35C0BE37972C38F135C0F15B2231540E35C0F4BAC42A05E435C0350DACAB4D0D35C0BB6C471500D735C057CDD0869D0B35C0B63100522DCA35C002A5DB2B480935C08AEECF4691BD35C0D39C1704520635C0DE87975930B135C076BDCF78BF0235C05AE237F00EA535C0810F4FF394FE34C0A3E29170319935C0989BE0DCD6F934C05D6D86409C8D35C0586ACF9E89F434C03467F6C5538235C0658466A2B1EE34C0CBB4C2665C7735C05EF2F05053E834C0C73ACC88BA6C35C0DEBCB91373E134C0CEDDF391726235C08AEC0B5415DA34C08D821AE8885835C00E8A327B3ED234C0A00D21F1014F35C0F29D78F2F2C934C0B463E812E24535C0E030292337C134C0716951B32D3D35C0854B8F760FB834C076033D38E93435C076F6F55580AE34C070168C07192D35C0493AA82A8EA434C003871F87C12535C0B91FF15D3D9A34C0D739D81CE71E35C053AF1B59928F34C08F13972E8E1835C0B5F17285918434C0D4F83C22BB1235C07DEF414C3F7934C048CEAA5D720D35C05DB1D316A06D34C09778C146B80835C0EA3F734EB86134C065DC6143910435C0CAA36B5C8C5534C059DE6CB9010135C092E507AA204934C01663C30E0EFE34C0EE0D93A0793C34C0464F46A9BAFB34C0742558A99B2F34C09087D6EE0BFA34C0CE34A22D8B2234C094F0544506F934C09B44BC964C1534C0006FA212AEF834C00102000000200000009B44BC964C1534C0006FA212AEF834C0502FA2370E0834C040687A4306F934C0E95367ECFDFA33C09BABABE70BFA34C0CFF4B51E20EE33C07E3CB499BAFB34C06754383879E133C0501E12F40DFE34C027B598A20DD533C083544391010135C06D5981C7E1C833C077E2C50B910435C099839C10FABC33C0A2CB17FEB70835C0187694E75AB133C06313B702720D35C0587313B608A633C02FBD21B4BA1235C0B9BDC3E5079B33C06ACCD5AC8D1835C0BD974FE05C9033C07F445187E61E35C0A743610F0C8633C0DB2812DEC02535C0E403A3DC197C33C0E77C964B182D35C0EA1ABFB18A7233C011445C6AE83435C01FCB5FF8626933C0C081E1D42C3D35C0E1562F1AA76033C06039A425E14535C0A700D8805B5833C05A6E22F7004F35C0CF0A0496845033C01B24DAE3875835C0BFB75DC3264933C00B5E4986716235C0DE498F72464233C09C1FEE78B96C35C09A03430DE83B33C0296C46565B7735C0592723FD0F3633C02D47D0B8528235C081F7D9ABC23033C00BB4093B9B8D35C079B61183042C33C02EB67077309935C0A8A674ECD92733C0025183080EA535C0730AAD51472433C0F287BF882FB135C05824651C512133C0625EA39290BD35C09E3647B6FB1E33C0C9D7ACC02CCA35C0BC83FD884B1D33C088F759ADFFD635C01F4E32FE441C33C00BC128F304E435C02DD88F7FEC1B33C0BE37972C38F135C00102000000200000002DD88F7FEC1B33C0BE37972C38F135C0B4FB5BFC441C33C07F18BC2D6BFE35C0A4EFE2814B1D33C0CE8DA242700B36C01B82D8A6FB1E33C0BB8A6805431836C01581F001512133C04F022C10DF2436C0C5BADE29472433C0A0E70AFD3F3136C03EFD56B5D92733C0B42D2366613D36C085160D3B042C33C0A3C792E53E4936C0C4D4B451C23033C071A87715D45436C0FA0502900F3633C037C3EF8F1C6036C04A78A88CE73B33C0FE0A19EF136B36C0D5F95BDE454233C0D47211CDB57536C09258D01B264933C0C8EDF6C3FD7F36C0AC62B9DB835033C0EC6EE76DE78936C037E6CAB45A5833C04BE900656E9336C046B1B83DA66033C0F54F61438E9C36C0ED91360D626933C0F79526A342A536C04156F8B9897233C060AE6E1E87AD36C05DCCB1DA187C33C03F8C574F57B536C04EC216060B8633C0A422FFCFAEBC36C02E06DBD25B9033C09E64833A89C336C01966B2D7069B33C035450229E2C936C016B050AB07A633C080B79935B5CF36C045B269E459B133C089AE67FAFDD436C0BB3AB119F9BC33C0611D8A11B8D936C08D17DBE1E0C833C014F71E15DFDD36C0C7169BD30CD533C0B22E449F6EE136C09206A58578E133C046B7174A62E436C0F4B4AC8E1FEE33C0E583B7AFB5E636C00AF06585FDFA33C09B87416A64E836C0DE8584000E0834C071B5D3136AE936C09B44BC964C1534C07E008C46C2E936C00102000000200000009B44BC964C1534C07E008C46C2E936C0EE59D6F58A2234C0C63DAE156AE936C0553511419B2F34C089636C7164E836C06F94C20E793C34C0AB9649BFB5E636C0CF3440F51F4934C009FCC86462E436C009D4DF8A8B5534C086B86DC76EE136C0D82FF765B76134C0FEF0BA4CDFDD36C09E05DC1C9F6D34C059CA335AB8D936C01F13E4453E7934C06F695B55FED436C0D7156577908434C029F3B4A3B5CF36C070CBB447918F34C0628CC3AAE2C936C081F1284D3C9A34C0F6590AD089C336C09745171E8DA434C0CF800C79AFBC36C05385D5507FAE34C0C9254D0B58B536C04D6EB97B0EB834C0C76D4FEC87AD36C018BE183536C134C0A87D968143A536C04E324913F2C934C0497AA5308F9C36C09088A0AC3DD234C09088FF5E6F9336C0707E749714DA34C05CCD2772E88936C07FD11A6A72E134C08C6DA1CFFE7F36C0593FE9BA52E834C0018EEFDCB67536C09D853520B1EE34C09A5395FF146B36C0DE61553089F434C03DE3159D1D6036C0BD919E81D6F934C0C661F41AD55436C0BED266AA94FE34C016F4B3DE3F4936C08FE20341BF0235C00DBFD74D623D36C0BC7ECBDB510635C08EE7E2CD403136C0E6641311480935C0779258C4DF2436C0995231779D0B35C0AAE4BB96431836C074057BA44D0D35C0070390AA700B36C0183B462F540E35C06D1258656BFE35C00AB1E8ADAC0E35C0BE37972C38F135C0010200000020000000D176CE812B0435C04A05F3FC0EFB3540C6210805D30335C01682C5FE41083640FCD2917FCC0235C04ED04214471536401793B65A1C0135C0520B8AD719223640C96AC1FFC6FE34C07C4EBAE2B52E36409A62FDD7D0FB34C024B5F2CF163B36404483B54C3EF834C0AF5A52393847364048D534C713F434C0635AF8B8155336405F61C6B055EF34C0A9CF03E9AA5E36401F30B57208EA34C0D2D59363F3693640254A4C7630E434C03B88C7C2EA7436402CB8D624D2DD34C04102BEA08C7F3640A5829FE7F1D634C03A5F9697D489364059B2F12794CF34C079BA6F41BE933640CF4F184FBDC734C0662F6938459D3640B9635EC671BF34C054D9A11665A63640A8F60EF7B5B634C096D3387619AF36404C11754A8EAD34C08E394DF15DB736403DBCDB29FFA334C09526FE212EBF364010008EFE0C9A34C004B66AA285C6364079E5D631BC8F34C02D03B20C60CD36401375012D118534C07D29F3FAB8D3364076B75859107A34C034444D078CD9364044B52720BE6E34C0C06EDFCBD4DE36402477B9EA1E6334C071C4C8E28EE33640B2055922375734C0A36028E6B5E73640926951300B4B34C0AC5E1D7045EB36405AABED7D9F3E34C0F2D9C61A39EE3640B5D37874F83134C0BFED43808CF036403BEB3D7D1A2534C078B5B33A3BF2364096FA87010A1834C0744C35E440F33640630AA26ACB0A34C008CEE71699F33640010200000020000000630AA26ACB0A34C008CEE71699F3364017F5870B8DFD33C0CAD40FE640F33640B1194DC07CF033C06F91DE413BF236408FBA9BF29EE333C08C00D68F8CF036402F1A1E0CF8D633C0BA1E783539EE3640EE7A7E768CCA33C082E8469845EB36402D1F679B60BE33C0915AC41DB6E73640604982E478B233C06271722B8FE33640DF3B7ABBD9A633C0A729D326D5DE36401839F989879B33C0D97F68758CD936408083A9B9869033C09C70B47CB9D336407D5D35B4DB8533C087F838A260CD3640670947E38A7B33C02B14784B86C63640ABC988B0987133C01CC0F3DD2EBF3640B1E0A485096833C0F5F82DBF5EB73640E69045CCE15E33C049BBA8541AAF3640A91C15EE255633C0A803E60366A6364067C6BD54DA4D33C0AECE6732469D36408FD0E969034633C0F118B045BF9336407F7D4397A53E33C0FCDE40A3D58936409E0F7546C53733C0701D9CB08D7F36405AC928E1663133C0DBD043D3EB74364019ED08D18E2B33C0DFF5B970F469364041BDBF7F412633C0FF8880EEAB5E3640327CF756832133C0DC8619B216533640686C5AC0581D33C008EC0621394736403BD09225C61933C016B5CAA0173B364011EA4AF0CF1633C0A6DEE696B62E36405EFC2C8A7A1433C04365DD681A2236408449E35CCA1233C08045307C47153640DF1318D2C31133C0FD7B613642083640ED9D75536B1133C04A05F3FC0EFB3540010200000020000000ED9D75536B1133C04A05F3FC0EFB354074C141D0C31133C0858820FBDBED354064B5C855CA1233C04C3AA3E5D6E03540D447BE7A7A1433C041FF5B2204D43540D646D6D5CF1633C017BC2B1768C735408580C4FDC51933C06855F32907BB354005C33C89581D33C0E4AF93C0E5AE35404CDCF20E832133C029B0ED4008A33540849A9A25412633C0ED3AE21073973540BBCBE7638E2B33C0BA3452962A8C35400A3E8E60663133C04D821E373381354095BF41B2C43733C04F08285991763540521EB6EFA43E33C05AAB4F62496C35406C289FAF024633C0135076B85F623540FEABB088D94D33C029DB7CC1D858354006779E11255633C0403144E3B84F3540AE571CE1E05E33C0FA36AD8304473540021CDE8D086833C0FED09808C03E35401D9297AE977133C0FEE3E7D7EF3635400E88FCD9897B33C092547B57982F3540EECBC0A6DA8533C05F0734EDBD283540D22B98AB859033C017E1F2FE64223540D675367F869B33C05CC698F2911C354005784FB8D8A633C0D09B062E49173540830097ED77B233C022461D178F1235404DDDC0B55FBE33C0EDA9BD13680E35408EDC80A78BCA33C0E0ABC889D80A354059CC8A59F7D633C09E301FDFE4073540BC7A92629EE333C0CD1CA27991053540D1B54B597CF033C0145532BFE2033540AC4B6AD48CFD33C01CBEB015DD023540630AA26ACB0A34C0883CFEE284023540010200000020000000630AA26ACB0A34C0883CFEE284023540B61FBCC9091834C042FFDB13DD0235401CFBF6141A2534C07FD91DB8E20335402F5AA8E2F73134C059A6406A9105354097FA25C99E3E34C0FD40C1C4E4073540DE99C55E0A4B34C082841C62D80A3540A0F5DC39365734C0084CCFDC670E354065CBC1F01D6334C0AB7256CF8E123540DFD8C919BD6E34C09BD32ED44817354098DB4A4B0F7A34C0DF49D585911C354030919A1B108534C0A5B0C67E6422354041B70E21BB8F34C010E37F59BD283540580BFDF10B9A34C036BC7DB0972F35401A4BBB24FEA334C03D173D1EEF36354014349F4F8DAD34C041CF3A3DBF3E3540E083FE08B5B634C060BFF3A70347354016F82EE770BF34C0BFC2E4F8B74F3540574E8680BCC734C078B48ACAD758354030445A6B93CF34C0AC6F62B75E6235403F97003EF1D634C07ECFE859486C35402005CF8ED1DD34C007AF9A4C90763540644B1BF42FE434C06AE9F42932813540A5273B0408EA34C0CB59748C298C35407D57845555EF34C041DB950E7297354085984C7E13F434C0F248D64A07A3354056A8E9143EF834C0FB7DB2DBE4AE35407C44B1AFD0FB34C07A55A75B06BB3540A72AF9E4C6FE34C095AA316567C735406018174B1C0135C06258CE9203D435403BCB6078CC0235C0FF39FA7ED6E03540D8002C03D30335C09C2A32C4DBED3540D176CE812B0435C04A05F3FC0EFB354001020000002000000069C7574C968851C076B57825870536402732262D808851C042324B27BA123640749EC88B3E8851C07A80C83CBF1F36407DCE9182D28751C07EBB0F00922C36406784D42B3D8751C0ACFE3F0B2E3936405C82E3A17F8651C0576578F88E453640868A11FF9A8551C0DB0AD861B0513640075FB15D908451C0930A7EE18D5D36400DC215D8608351C0D97F891123693640BD7591880D8251C0FE85198C6B7436403E3C7789978051C06B384DEB627F3640BED719F5FF7E51C06DB243C9048A3640600ACCE5477D51C0690F1CC04C9436404996E075707B51C0A96AF569369E3640A93DAABF7A7951C096DFEE60BDA73640A3C27BDD677751C08089273FDDB0364061E7A7E9387551C0C583BE9E91B93640086E81FEEE7251C0BEE9D219D6C13640C4185B368B7051C0C1D6834AA6C93640B9A987AB0E6E51C03166F0CAFDD0364013E359787A6B51C05DB33735D8D73640FA8624B7CF6851C0A5D9782331DE364094573A820F6651C063F4D22F04E436400817EEF33A6351C0EC1E65F44CE936407E879226536051C09D744E0B07EE3640216B7A34595D51C0CF10AE0E2EF236401984F8374E5A51C0DB0EA398BDF536408D945F4B335751C01E8A4C43B1F83640A45E0289095451C0EE9DC9A804FB364084A4330BD25051C0A4653963B3FC36405C2846EC8D4D51C0A0FCBA0CB9FD36404EAC8C463E4A51C0347E6D3F11FE36400102000000200000004EAC8C463E4A51C0347E6D3F11FE3640FB26C6AEEE4651C0F684950EB9FD36402370F79BAA4351C09B41646AB3FC364059188B28734051C0B4B05BB804FB364043B0EB6E493D51C0E3CEFD5DB1F8364071C883892E3A51C0AE98CCC0BDF5364082F1BD92233751C0BD0A4A462EF236400DBC04A5293451C08E21F85307EE3640ADB8C2DA413151C0D3D9584F4DE93640FB77624E6D2E51C00230EE9D04E43640958A4E1AAD2B51C0C5203AA531DE36401681F158022951C0B3A8BECAD8D736400FECB5246E2651C05BC4FD73FED036401E5C0698F12351C04B707906A7C93640E1614DCD8D2151C021A9B3E7D6C13640EF8DF5DE431F51C0756B2E7D92B93640DF7069E7141D51C0D4B36B2CDEB03640529B1301021B51C0DA7EED5ABEA73640DA9D5E460C1951C019C9356E379E36401709B5D1341751C0248FC6CB4D9436409D6D81BD7C1551C098CD21D9058A36400F5C2E24E51351C00B81C9FB637F3640FD6426206F1251C007A63F996C7436400519D4CB1B1151C02739061724693640C508A241EC0F51C004379FDA8E5D3640D1C4FA9BE10E51C0309C8C49B1513640C4DD48F5FC0D51C0426550C98F4536403DE4F6673F0D51C0CE8E6CBF2E393640CE686F0EAA0C51C06B156391922C364016FC1C033E0C51C0ACF5B5A4BF1F3640B02E6A60FC0B51C0292CE75EBA1236403291C140E60B51C076B57825870536400102000000200000003291C140E60B51C076B5782587053640169AF45FFC0B51C0B138A62354F83540105756013E0C51C075EA280E4FEB3540ACBB930AAA0C51C071AFE14A7CDE35406EBB59613F0D51C0466CB13FE0D13540D84955EBFC0D51C0940579527FC53540785A338EE10E51C0136019E95DB93540C8E0A02FEC0F51C05560736980AD354058D04AB51B1151C019EB6739EBA13540A51CDE046F1251C0E6E4D7BEA296354038B90704E51351C07D32A45FAB8B35409C9974987C1551C07EB8AD81098135404BB1D1A7341751C0865BD58AC1763540D2F3CB170C1951C04200FCE0D76C3540B55410CE011B51C0558B02EA5063354078C74BB0141D51C06CE1C90B315A3540A23F2BA4431F51C026E732AC7C513540B7B05B8F8D2151C02D811E31384935403C0E8A57F12351C02A946D0068413540B94B63E26D2651C0BE040180103A3540B25C9415022951C08EB7B91536333540AB34CAD6AC2B51C046917827DD2C35402AC7B10B6D2E51C08C761E1B0A273540B807F899413151C0034C8C56C1213540D6E94967293451C052F6A23F071D35400A615459233751C01D5A433CE0183540D860C4552E3A51C00C5C4EB250153540CDDC4642493D51C0CDE0A4075D12354066C88804734051C0FDCC27A20910354027173782AA4351C04405B8E75A0E3540A0BCFEA0EE4651C04B6E363E550D35404EAC8C463E4A51C0B8EC830BFD0C35400102000000200000004EAC8C463E4A51C0B8EC830BFD0C3540A23153DE8D4D51C072AF613C550D35407CE821F1D15051C0AF89A3E05A0E354041408E64095451C08956C692091035405BA82D1E335751C030F146ED5C1235402D9095034E5A51C0AA34A28A501535401D675BFA585D51C038FC5405E0183540909C14E8526051C0DB22DCF7061D3540EF9F56B23A6351C0C783B4FCC02135409BE0B63E0F6651C00BFA5AAE0927354003CECA72CF6851C0D4604CA7DC2C354087D727347A6B51C03C930582353335408D6C63680E6E51C0696C03D90F3A35407AFC12F58A7051C069C7C24667413540B8F6CBBFEE7251C06D7FC06537493540ADCA23AE387551C0906F79D07B513540BCE7AFA5677751C0EB726A21305A35404BBD058C7A7951C0A76410F34F633540C1BABA46707B51C0D81FE8DFD66C3540874F64BB477D51C0A67F6E82C0763540FDEA97CFFF7E51C0375F2075088135408EFCEA68978051C09A997A52AA8B35409EF3F26C0D8251C0F709FAB4A1963540963F45C1608351C06E8B1B37EAA13540D64F774B908451C022F95B737FAD3540CB931EF19A8551C0242E38045DB93540D47AD0977F8651C0A6052D847EC53540607422253D8751C0BE5AB78DDFD13540CDEFA97ED28751C08A0854BB7BDE3540845CFC893E8851C02FEA7FA74EEB3540EB29AF2C808851C0C5DAB7EC53F8354069C7574C968851C076B5782587053640010200000020000000F164C3DCD68D51C0EAE71C55B0FB35C040CA5C17D28D51C01CD2675111F335C003DC9251BA8D51C00F0D473D7EEA35C034E0DBC68F8D51C04135D8B8F8E135C0DA1CAEB2528D51C027E7386482D935C0E9D77F50038D51C046BF86DF1CD135C06D57C7DBA18C51C0165ADFCAC9C835C057E1FA8F2E8C51C0115460C68AC035C0ABBB90A8A98B51C0B849277261B835C0682CFF60138B51C08AD7516E4FB035C08B79BCF46B8A51C0029AFD5A56A835C018E93E9FB38951C0912D48D877A035C005C1FC9BEA8851C0C32E4F86B59835C052476C26118851C0103A3005119135C002C2037A278751C0F1EB08F58B8935C0117739D22D8651C0E6E0F6F5278235C07CAC836A248551C06BB517A8E67A35C043A8587E0B8451C0FA0589ABC97335C062B02E49E38251C0146F68A0D26C35C0DD0A7C06AC8151C0308DD326036635C0A9FDB6F1658051C0D2FCE7DE5C5F35C0D1CE5546117F51C06F5AC368E15835C049C4CE3FAE7D51C088428364925235C0112498193D7C51C096514572714C35C02C34280FBE7A51C019242732804635C0913AF55B317951C08E564644C04035C0487D753B977751C07085C048333B35C049421FE9EF7551C0394DB3DFDA3535C094CF68A03B7451C0694A3CA9B83035C0266BC89C7A7251C07D197945CE2B35C0005BB419AD7051C0EE5687541D2735C01FE5A252D36E51C03D9F8476A72235C00102000000200000001FE5A252D36E51C03D9F8476A72235C0A5096DEEEF6C51C0856FE689731E35C0A5625DBC056B51C0ED31B957871A35C00F9D9434156951C072E6FCDFE21635C0D56533CF1E6751C0128DB122861335C0DE695A04236551C0D325D71F711035C026562A4C226351C0ADB06DD7A30D35C08BD7C31E1D6151C0A62D75491E0B35C0079B47F4135F51C0BC9CED75E00835C0844DD644075D51C0F1FDD65CEA0635C0F29B9088F75A51C0415131FE3B0535C044339737E55851C0AD96FC59D50335C060C00ACAD05651C038CE3870B60235C039F00BB8BA5451C0E2F7E540DF0135C0C16FBB79A35251C0A81304CC4F0135C0DDEB39878B5051C089219311080135C08611A858734E51C08C219311080135C0A78D26665B4C51C0A61304CC4F0135C02C0DD627444A51C0E0F7E540DF0135C0073DD7152E4851C038CE3870B60235C022CA4AA8194651C0AF96FC59D50335C072615157074451C03F5131FE3B0535C0E2AF0B9BF74151C0EFFDD65CEA0635C060629AEBEA3F51C0BA9CED75E00835C0DC251EC1E13D51C0A62D75491E0B35C043A7B793DC3B51C0ADB06DD7A30D35C0849387DBDB3951C0D225D71F711035C09297AE10E03751C0128DB122861335C058604DABE93551C071E6FCDFE21635C0C29A8423F93351C0EF31B957871A35C0C1F374F10E3251C0876FE689731E35C047183F8D2B3051C03D9F8476A72235C001020000002000000047183F8D2B3051C03D9F8476A72235C067A22DC6512E51C0F05687541D2735C043921943842C51C07C197945CE2B35C0D22D793FC32A51C06B4A3CA9B83035C01DBBC2F60E2951C0394DB3DFDA3535C01C806CA4672751C07085C048333B35C0D5C2EC83CD2551C08C564644C04035C03CC9B9D0402451C01C242732804635C056D949C6C12251C097514572714C35C01C3913A0502151C08A428364925235C0932E8C99ED1F51C0725AC368E15835C0BBFF2AEE981E51C0D2FCE7DE5C5F35C089F265D9521D51C0328DD326036635C0024DB3961B1C51C0146F68A0D26C35C023558961F31A51C0FA0589ABC97335C0E8505E75DA1951C06BB517A8E67A35C05286A80DD11851C0E6E0F6F5278235C0623BDE65D71751C0F1EB08F58B8935C012B675B9ED1651C0123A3005119135C0603CE543141651C0C52E4F86B59835C04C14A3404B1551C0952D48D877A035C0D78325EB921451C0FC99FD5A56A835C0FAD0E27EEB1351C088D7516E4FB035C0BA415137551351C0BA49277261B835C00D1CE74FD01251C0115460C68AC035C0F9A51A045D1251C0145ADFCAC9C835C07725628FFB1151C046BF86DF1CD135C08DE0332DAC1151C027E7386482D935C0311D06196F1151C04135D8B8F8E135C062214F8E441151C0110D473D7EEA35C0243385C82C1151C01ED2675111F335C073981E03281151C0EAE71C55B0FB35C001020000002000000073981E03281151C0EAE71C55B0FB35C0263385C82C1151C0C1871E584F0436C064214F8E441151C0CA69976BE20C36C0301D06196F1151C0C48E69EF671536C08CE0332DAC1151C06BF77643DE1D36C07925628FFB1151C083A4A1C7432636C0FBA51A045D1251C0C596CBDB962E36C00D1CE74FD01251C0F9CED6DFD53636C0B8415137551351C0DC4DA533FF3E36C0FAD0E27EEB1351C02E141937114736C0D48325EB921451C0AA22144A0A4F36C04F14A3404B1551C0117A78CCE85636C05E3CE543141651C0291B281EAB5E36C012B675B9ED1651C0AC06059F4F6636C0643BDE65D71751C05E3DF1AED46D36C05486A80DD11851C0F8BFCEAD387536C0E8505E75DA1951C0438F7FFB797C36C023558961F31A51C0F7ABE5F7968336C0024DB3961B1C51C0D716E3028E8A36C08BF265D9521D51C0A0D0597C5D9136C0B9FF2AEE981E51C017DA2BC4039836C0972E8C99ED1F51C0F7333B3A7F9E36C0203913A0502151C002DF693ECEA436C054D949C6C12251C0F7DB9930EFAA36C03CC9B9D0402451C0972BAD70E0B036C0D3C2EC83CD2551C09ECE855EA0B636C01E806CA4672751C0D0C5055A2DBC36C01DBBC2F60E2951C0EA110FC385C136C0D22D793FC32A51C0AFB383F9A7C636C03F921943842C51C0DAAB455D92CB36C064A22DC6512E51C02FFB364E43D036C047183F8D2B3051C06AA2392CB9D436C001020000002000000047183F8D2B3051C06AA2392CB9D436C0C4F374F10E3251C09D378B19EDD836C0C49A8423F93351C001E55F4CD9DC36C058604DABE93551C095AAB7C47DE036C09297AE10E03751C059889282DAE336C0849387DBDB3951C04E7EF085EFE636C045A7B793DC3B51C06F8CD1CEBCE936C0DA251EC1E13D51C0C2B2355D42EC36C05D629AEBEA3F51C044F11C3180EE36C0E0AF0B9BF74151C0F847874A76F036C06E615157074451C0DAB674A924F236C024CA4AA8194651C0E83DE54D8BF336C0053DD7152E4851C029DDD837AAF436C02A0DD627444A51C09A944F6781F536C0A58D26665B4C51C03B6449DC10F636C08611A858734E51C00B4CC69658F636C0DFEB39878B5051C00D4CC69658F636C0BF6FBB79A35251C03C6449DC10F636C03BF00BB8BA5451C09A944F6781F536C060C00ACAD05651C029DDD837AAF436C044339737E55851C0EA3DE54D8BF336C0F59B9088F75A51C0D6B674A924F236C0864DD644075D51C0F647874A76F036C0079B47F4135F51C044F11C3180EE36C08BD7C31E1D6151C0C2B2355D42EC36C023562A4C226351C06F8CD1CEBCE936C0E0695A04236551C04C7EF085EFE636C0D46533CF1E6751C059889282DAE336C00F9D9434156951C095AAB7C47DE036C0A4625DBC056B51C003E55F4CD9DC36C0A3096DEEEF6C51C09F378B19EDD836C01FE5A252D36E51C06AA2392CB9D436C00102000000200000001FE5A252D36E51C06AA2392CB9D436C0005BB419AD7051C02DFB364E43D036C0286BC89C7A7251C0D8AB455D92CB36C094CF68A03B7451C0ADB383F9A7C636C04B421FE9EF7551C0EA110FC385C136C0447D753B977751C0D1C5055A2DBC36C0943AF55B317951C09DCE855EA0B636C02A34280FBE7A51C0972BAD70E0B036C0112498193D7C51C0F9DB9930EFAA36C044C4CE3FAE7D51C004DF693ECEA436C0CDCE5546117F51C0FD333B3A7F9E36C0ABFDB6F1658051C017DA2BC4039836C0DD0A7C06AC8151C0A2D0597C5D9136C062B02E49E38251C0D716E3028E8A36C043A8587E0B8451C0F9ABE5F7968336C07CAC836A248551C0418F7FFB797C36C0107739D22D8651C0FABFCEAD387536C003C2037A278751C05E3DF1AED46D36C054476C26118851C0AE06059F4F6636C007C1FC9BEA8851C02A1B281EAB5E36C016E93E9FB38951C0137A78CCE85636C08E79BCF46B8A51C0A822144A0A4F36C06C2CFF60138B51C02C141937114736C0ABBB90A8A98B51C0DC4DA533FF3E36C057E1FA8F2E8C51C0F9CED6DFD53636C06B57C7DBA18C51C0C796CBDB962E36C0EBD77F50038D51C083A4A1C7432636C0D81CAEB2528D51C06BF77643DE1D36C034E0DBC68F8D51C0C48E69EF671536C002DC9251BA8D51C0CD69976BE20C36C03ECA5C17D28D51C0C3871E584F0436C0F164C3DCD68D51C0EAE71C55B0FB35C0010200000002000000AE471066DAFE553F4DC1CCD2A906E03F37B9CA02EF11703FC5CD8EE01C06E03F01020000002000000037B9CA02EF11703FC5CD8EE01C06E03F90B067097ABD9C3FF8A7C25CF600E03FF6C2C31C18DEAB3F34B94E2919E0DF3FF60D67DFBA94B43F72CBFEC26AA8DF3F767720C7211EBB3F21909E54735BDF3F8F8CA2CB7BC4C03FD60F37ACC4F9DE3F0AF7C59079E9C33FD355D197F083DE3F52FCD59BE5FCC63F916B76E588FADD3F6416AE559BFDC93F875A2F631F5EDD3F31C8292776EACC3F152D05DF45AFDC3F808D247951C2CF3FB1EC00278EEEDB3FD7F23C5A0442D13F83A52B098A1CDB3F27A702A13B97D23F3A5F8E53CB39DA3F772251453CE0D33F502332D4E346D93F272796FB731CD53F3DFB1F596544D83F33723F78504BD63F26F360B0E132D73F67C2BA6F3F6CD73FA113FEA7EA12D63F6ED77596AE7ED83F0A67000E12E5D43F1370DEA00B82D93FDBF670B0E9A9D33FE94C6243C475DA3F71CD585D0362D23F9E2D6F324659DB3F5FF3C0E2F00DD13F30CF7222FF2BDC3FD1E7641D885CCF3F4DF1DAC75CEDDC3F0AB16C5E1D87CC3F535615D7CC9CDD3F2557AB24C59CC93F92B88F04BD39DE3F4AEB320CA39EC63F31DCB7049BC3DE3FC58515B1DA8DC33F497DFB8BD439DF3F2D3465AF8F6BC03FA45AC84ED79BDF3F2F216846CB71BA3F84378C0111E9DF3FC954285100EEB33F8F675AAC7710E03F37595E6E0B9CAA3F02F157047021E03FB85683C28A509A3F8097F5622827E03FBF9F482FC5B04EBF0102000000200000008097F5622827E03FBF9F482FC5B04EBF8FF057047021E03F6FD27715973B9CBF37665AAC7710E03F359ED8979191ABBF9F368C0111E9DF3F4877E565C368B4BFBF59C84ED79BDF3FAE43255B8EECBABF497DFB8BD439DF3F35C7C339F1A8C0BF31DCB7049BC3DE3F7313743B3CCBC3BF77B98F04BD39DE3F897C919604DCC6BF535615D7CC9CDD3F9CE609AF26DAC9BF17F3DAC75CEDDC3F1344CBE87EC4CCBF15D07222FF2BDC3FD97AC3A7E999CFBFB82C6F324659DB3FFF3BF0A7A12CD1BFE94C6243C475DA3F10168822B480D2BFF870DEA00B82D93F7B3FA0759AC8D3BF6ED77596AE7ED83FAAAF2FD3C203D5BF9CC0BA6F3F6CD73F415C2D6D9B31D6BF4E713F78504BD63FAA3C90759251D7BF272796FB731CD53FDC434F1E1663D8BF772251453CE0D33F0B6B61999465D9BF41A602A13B97D23FF6A6BD187C58DABFF2F13C5A0442D13F07EF5ACE3A3BDBBFB68B247951C2CF3F353630EC3E0DDCBF9CC4292776EACC3F997634A4F6CDDCBF6416AE559BFDC93F27A35E28D07CDDBF88FAD59BE5FCC63F30B4A5AA3919DEBFD5F8C59079E9C33F8E9D005DA1A2DEBF5A8EA2CB7BC4C03F765866717518DFBF767720C7211EBB3FDCD7CD19247ADFBF8A1167DFBA94B43F12142E881BC7DFBF1FCAC31C18DEAB3FD4017EEEC9FEDFBF33CD67097ABD9C3FD64B5ABF4E10E0BF36E5D8B785A56F3F0EFA6E8D7815E0BF01020000000200000036E5D8B785A56F3F0EFA6E8D7815E0BFAE471066DAFE553F9D6564350216E0BF010200000020000000AE471066DAFE553F9D6564350216E0BF3EC4A5BC9EFD99BF634B5ABF4E10E0BFA4C562762A7EAABF0B007EEEC9FEDFBFE192360CC4E4B3BF2D132E881BC7DFBFCDF8EFF32A6EBABFF8D6CD19247ADFBFA6490A62806CC0BF925766717518DFBFB6B72D277E91C3BF8E9D005DA1A2DEBF69B93D32EAA4C6BF30B4A5AA3919DEBF45D515EC9FA5C9BF27A35E28D07CDDBF7E8391BD7A92CCBF997634A4F6CDDCBF03478C0F566ACFBFFE3730EC3E0DDCBF63D170A50616D1BF07EF5ACE3A3BDBBFB28536EC3D6BD2BFF6A6BD187C58DABFE80185903EB4D3BF0B6B61999465D9BF9706CA4676F0D4BFDC434F1E1663D8BFBF5073C3521FD6BFC63B90759251D7BFF2A0EEBA4140D7BF415C2D6D9B31D6BFFAB5A9E1B052D8BFAAAF2FD3C203D5BF844F12EC0D56D9BF973EA0759AC8D3BF3F2D968EC649DABF2C158822B480D2BF290CA37D482DDBBFFF3BF0A7A12CD1BFA0AEA66D0100DCBF1179C3A7E999CFBFA3D10E135FC1DCBF4A42CBE87EC4CCBFDF344922CF70DDBF64E809AF26DAC9BFE898C34FBF0DDEBF897C919604DCC6BFBCBAEB4F9D97DEBF3B15743B3CCBC3BFD55B2FD7D60DDFBF35C7C339F1A8C0BFFA3AFC99D96FDFBF1D40255B8EECBABFF516C04C13BDDFBF4877E565C368B4BFA9ADE8A3F1F4DFBF58A5D8979191ABBFBAE0F129710BE0BFB4E07715973B9CBF38878F882911E0BFBF9F482FC5B04EBF01020000002000000038878F882911E0BFBF9F482FC5B04EBFBAE0F129710BE0BF734883C28A509A3F73AFE8A3F1F4DFBF5A605E6E0B9CAA3FF516C04C13BDDFBFC954285100EEB33FDF3BFC99D96FDFBF2F216846CB71BA3FD55B2FD7D60DDFBFF63565AF8F6BC03FA1BBEB4F9D97DEBFC58515B1DA8DC33F0398C34FBF0DDEBF4AEB320CA39EC63FC4354922CF70DDBF2557AB24C59CC93FBED00E135FC1DCBF0AB16C5E1D87CC3FD6ACA66D0100DCBF40E4641D885CCF3F290CA37D482DDBBF5FF3C0E2F00DD13F5A2C968EC649DABF8CCC585D0362D23F844F12EC0D56D9BFDBF670B0E9A9D33FFAB5A9E1B052D8BF0A67000E12E5D43FD7A1EEBA4140D7BFA113FEA7EA12D63FBF5073C3521FD6BF26F360B0E132D73F9706CA4676F0D4BF3DFB1F596544D83FE80185903EB4D3BF6C2232D4E346D93FB28536EC3D6BD2BF3A5F8E53CB39DA3F63D170A50616D1BF83A52B098A1CDB3F974A8C0F566ACFBF7AEE00278EEEDB3F128791BD7A92CCBFF92D05DF45AFDC3F45D515EC9FA5C9BF6C5B2F631F5EDD3F69B93D32EAA4C6BF916B76E588FADD3FB6B72D277E91C3BFD355D197F083DE3F714B0A62806CC0BFF20E37ACC4F9DE3FCDF8EFF32A6EBABF3D8F9E54735BDF3FB88B360CC4E4B3BF8DCAFEC26AA8DF3F52B762762A7EAABF50B84E2919E0DF3FECB5A5BC9EFD99BF86A7C25CF600E03FAE471066DAFE553F4DC1CCD2A906E03F0102000000020000003797E2AA7273554040B0A481C4FB0B403797E2AA727355408C454A0E33F70F40');

The special visual functions you will see with the shots and the rink are done with some functions for Postgres in pg_svg. This isn’t really an extension, it is just a handy functions you can load into any Postgres database to help create SVGs. To load this in your database download it and run something like:

psql postgres://postgres:123155012sdfxxcwsdfweweff@p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5432/postgres < pg-svg-lib.sql

Brian wrote two sample SVG shot chart functions for this project. One large and one small that could fit inside a spreadsheet if that’s your final data destination.

Big chart function
-- FUNCTION: postgisftw.big_chart(text)

-- pg_featureserv looks for functions in the 'postgisftw' schema

-- ** IMPORTANT  SRID 32613 is 'fake', just needed a planar projection to work with the arbitrary X/Y of the rink

CREATE OR REPLACE FUNCTION postgisftw.big_chart(
	player_id text DEFAULT '8476455'::text) -- if no id, then Landeskog goals
    RETURNS TABLE(svg text)
    LANGUAGE 'plpgsql'
    COST 100
    STABLE STRICT PARALLEL UNSAFE
    ROWS 1000

AS $BODY$
BEGIN
  RETURN QUERY

  -- we only want to display the offensive end of the rink
with half_rink as (
select st_intersection(therink.geom,ST_SetSRID(ST_MakeBox2D(ST_Point(-0.1, 42.55), ST_Point(101, -42.55)), 32613))
as geom
from therink
),

goals as (
-- collect all of a player's goals into a single geometry
select 	ST_SetSRID(st_collect(geom)::geometry, 32613) as geom
	from
(	SELECT
	st_intersection(ST_SetSRID(goals.plot_pt,32613),ST_SetSRID(ST_MakeBox2D(ST_Point(-0.1, 42.55), ST_Point(101, -42.55)), 32613))
 	as geom
 	from postgisftw.goals
	WHERE playerid ILIKE player_id || '%'

)q1
),
   -- get player name, team total number of goals for title display
playerinfo AS (

	select UPPER(q1.players) as this_player,min(q1.team_scored) as this_team
	, count(q1.playerid)::text as num_goals from
	(
	select a.players,a.playerid,a.team_scored
	from postgisftw.goals a WHERE playerid ILIKE player_id || '%'
	) q1
	group by q1.players

),

-- make the SVG document

shapes AS (

  --rink styling
  SELECT geom, svgShape( geom,
    style => svgStyle(  'stroke', '#2E9AFE',
                        'stroke-width', 0.5::text )
					   )
    svg FROM half_rink

  UNION ALL
	-- goals styling
	SELECT geom, svgShape( geom,
    style => svgStyle(  'stroke', '#F5A9A9',
                        'stroke-width', 0.5::text,
					  	'fill','#FF0040'
					    					 )
					   )
    svg FROM goals

	UNION ALL
	-- player name, team, and total number of goals
	-- create an arbitrary point underneath the rink and reasonably centered
	SELECT NULL, svgText(ST_SetSRID(ST_MakePoint(50,-46),32613),this_player||'  ('||this_team||') -  '||num_goals||' goals',
	style => svgStyle(  'fill', '#585858', 'text-anchor', 'middle', 'font', 'bold 3px sans-serif' ) )
    svg
	from playerinfo

)
-- create the final viewbox
-- Martin Davis uses a sensible default of expanding the collected geometry
-- since our rink geometry is static, I hard coded a viewbox
SELECT svgDoc( array_agg( shapes.svg ),
	viewbox => '-2.1 -44.5 104.4 93'
    --viewbox => svgViewbox( ST_Expand( ST_Extent(geom), 2))
  ) AS svg FROM shapes
  ;
END;
$BODY$;

ALTER FUNCTION postgisftw.big_chart(text)
    OWNER TO postgres;

The big chart will be centered in the browser with no height and width specification in the first line. In addition, we have added a title line with player name, team, and number of goals.

Cell size chart function
  -- FUNCTION: postgisftw.cell_chart(text)

  -- DROP FUNCTION IF EXISTS postgisftw.cell_chart(text);

  -- pg_featureserv looks for functions in the 'postgisftw' schema

  -- TO GET OUR CHART TO DISPLAY REASONABLY IN Google Sheets we need three adjustments:
  --  1) 'shrink' the geometries to 40% of their default size applying ST_SCALE
  --  2) Use ST_TRANSLATE to slide the upper left corner of the rink to (0,0) -- as much as practical
  --  3) Add a hard coded set of height and width values to the final SVG document

  -- ** IMPORTANT  SRID 32613 is 'fake', just needed a planar projection to work with the arbitrary X/Y of the rink

  CREATE OR REPLACE FUNCTION postgisftw.cell_chart(
  	rec_num_id text DEFAULT '4668'::text -- if no id, then Landeskog goal
  	)
      RETURNS TABLE(svg text)
      LANGUAGE 'plpgsql'
      COST 100
      STABLE STRICT PARALLEL UNSAFE
      ROWS 1000

  AS $BODY$
  BEGIN
    RETURN QUERY

  with half_rink as (

  select st_translate(     -- Scale and Translate for Google Sheets use case
  	st_scale(q1.geom,0.4,0.4)
  	,-2,-18
  ) as geom from
  	(
  		-- we only want to display the offensive end of the rink
  		select st_intersection(therink.geom,ST_SetSRID(ST_MakeBox2D(ST_Point(-0.1, 42.55), ST_Point(101, -42.55)), 32613))
  		as geom
  		from therink
  	) q1
  ),
  goals as (
  select
  	st_translate(   -- Scale and Translate for Google Sheets use case
  	st_scale(q2.geom,0.4,0.4)
  	,-2,-18 )
  	 as geom from
  	(
  		-- collect all of a player's goals into a single geometry
  		SELECT ST_SetSRID(st_collect(geom)::geometry, 32613) as geom
  		from
  		(	SELECT
  			st_intersection(ST_SetSRID(goals.plot_pt,32613),ST_SetSRID(ST_MakeBox2D(ST_Point(-0.1, 42.55), ST_Point(101, -42.55)), 32613))
  			as geom
  			from postgisftw.goals
  			WHERE rec_num = rec_num_id::INTEGER -- uses the rec_num id fed into the function
  		)q1
  	)q2
  ),

  shapes AS (

    -- Rink SVG + styling
    SELECT geom, svgShape( geom,
      style => svgStyle(  'stroke', '#2E9AFE',
                          'stroke-width', 0.5::text )
  					   )
      svg FROM half_rink

    UNION ALL

  	-- goals SVG + styling
  	SELECT geom, svgShape( geom,
      style => svgStyle(  'stroke', '#F5A9A9',
                          'stroke-width', 0.5::text,
  					  	'fill','#FF0040'
  					    					 )
  					   )
      svg FROM goals

  )
  	--IMPORTANT we are hard-coding the extent of the document + adding height and width explicitly
  	--Google Sheets needs the height and width of the document specified (apparently)

  SELECT svgDoc( array_agg( shapes.svg ),
   	'0 0 43 36" width="43mm" height="36mm '  --**WARNING -- hard coded values
    ) AS svg FROM shapes
    ;
  END;
  $BODY$;

  ALTER FUNCTION postgisftw.cell_chart(text)
      OWNER TO postgres;

The small chart is scaled down, and the content is shifted to the origin of the SVG coordinate space ( 0,0 is in the upper left corner). In the small chart, you can see we have added width and height parameters in millimeters.

pg_featureserv = JSON and SVG URLs from Postgres

pg_featureserv is a project that will run a separate lightweight Go server on top of your Postgres database to expose JSON, Geojson, and (newly) SVGs. pg_featureserv requires data to have a spatial reference id (SRID). You can just use a stand-in SRID and that is what is in the example data and functions.

pg_featureserv can be run as its own server and you can also run it from inside your database using the Crunchy Bridge Container Apps feature, based off of the podman project. To build a pg_featureserv container in a database, you’ll run something like this:

SELECT run_container('-dt -p 5433:5433/tcp -e DATABASE_URL="postgres://postgres:Rb3bZ1VZ7dZIUiFiy62J0OHVZybYROJjoDId@p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5432/postgres" -e PGFS_SERVER_HTTPPORT=5433 docker.io/pramsey/pg_featureserv:latest');

pg_featureserv will then be running in a web browser at a link like http://p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5433. To get data from pg_featureserv, you make requests with URLs for the data you want. Here’s a couple of samples:

JSON:

http://p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5433/collections/postgisftw.goals/items.json

SVG:

http://p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5433/functions/postgisftw.cell_chart/items.svg

You can further qualify URLs with player details and other queries in the url strings, like this:

http://p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5433/functions/postgisftw.cell_chart/items.svg?player_id=8471677

Here’s your resulting SVG file displayed at a browser URL.

svg in browser featureservs

Google sheets import of JSON and SVG

To load the JSON data into a Google Sheet, the fastest approach is to use Apps Scripts to write some JavaScript to process the JSON into an array of rows containing an array of columns. In a Google Sheet, go to Extensions > App Scripts. Create a new blank script, and replace the generated code with the following:

function ImportJSON(url) {
	const response = UrlFetchApp.fetch(url)
	const jsonString = response.getContentText()
	const data = JSON.parse(jsonString).features.map(feature => ({
		point_x: feature.geometry.coordinates[0],
		point_y: feature.geometry.coordinates[1],
		...feature.properties,
	}))

	const columns = [
		'players',
		'team_scored',
		'period_num',
		'this_event',
		'this_event_code',
		'playerid',
		'game_id',
		'rec_num',
	]

	const rows = data.map(item => columns.map(column => item[column]))

	return [columns].concat(rows)
}

Please note this is a specialized version of the function to only select specific columns and reorder them. To make it more general, replace the columns variable instantiation with something like the following:

const columns = Object.keys(data[0])

Consider renaming the file to something like ImportJSON.gs then save the file as the last step. This will provide an ImportJSON() function we can use within the Google Sheet. In your Google Sheet, enter into a cell like A1 and use the something like this to combine bring in the JSON data with a limit or filters:

=ImportJSON("http://p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5433/collections/postgisftw.goals/items.json?limit=50")

This will load the JSON data into the Google Sheet starting at A1.

To make a SVG ready for Google Sheet, use the Google Sheets IMAGE function with the pg_featureserv URL. Concatenating the URL lets us tie the JSON row to the right SVG data.

=IMAGE(CONCATENATE("http://p.aqlunx3nqvebfh2bgffjj364ey.db.postgresbridge.com:5433/functions/postgisftw.cell_chart/items.svg?rec_num_id=", B1))

Here’s a view of our final spreadsheet

google sheet screenshot

Open source for the win

Crunchy Data supports both pg_featureserv and pg_svg until I saw this talk, I had no idea they would work together. Martin obviously did because he wrote them both! The best part is that our fully managed Crunchy Bridge supported all of this, so it was super easy for me to set this up on a test sersver and tear it down when I'm finished testing.



Thanks to Jay Zawrotny for the javascript assistance. A huge thank you to Brian Timoney for letting me experiment with his hockey code and SVGs.

by Elizabeth Christensen (Elizabeth.Christensen@crunchydata.com) at January 30, 2024 01:00 PM

January 07, 2024

Paul Ramsey

PgConf.Dev @ Vancouver, May 28-31

This year, the global gathering of PostgreSQL developers has a new name, and a new location (but more-or-less the same dates) … pgcon.org is now pgconf.dev!

Some important points right up front:

  • The call for papers is closing in one week! If you are planning to submit, now is the time!
  • The hotel scene in Vancouver is competitive, so if you put off booking accomodations… don’t do that! Book a room right away.
  • The venue capacity is 200. That’s it, so once we have 200 registrants, we are full for this year. Register now.
  • There are also limited sponsorship slots. Is PostgreSQL important to your business? Sponsor!

Vancouver, Canada

I first attended pgcon.org in 2011, when I was invited to keynote on the topic of PostGIS. Speaking in front of an audience of PostgreSQL luminaries was really intimidating, but also gratifying and empowering. Notwithstanding my imposter syndrome, all those super clever developers thought our little geospatial extension was… kind of clever.

I kept going to PgCon as regularly as I was able over the years, and was never disappointed. The annual gathering of the core developers of PostgreSQL necessarily includes content and insignts that you simply can not come across elsewhere, all compactly in one smallish conference, and the hallway track is amazing.

PostgreSQL may be a global development community, but the power of personal connection is not to be denied. Getting to meet and talk with core developers helped me understand where the project was going, and gave me the confidence to push ahead with my (very tiny) contributions.

This year, the event is in Vancouver! Still in Canada, but a little more directly connected to international air hubs than Ottawa was.

Also, this year I am honored to get a chance to serve on the program committee! We are looking for technical talks from across the PostgreSQL ecosystem, as well as about happenings in core. PostgreSQL is so much larger than just the core, and spreading the word about how you are building on PostgreSQL is important (and I am not just saying that as an extension author).

I hope to see you all there!

January 07, 2024 04:00 PM

December 19, 2023

Paul Ramsey

Data Science is Getting Ducky

For a long time, a big constituency of users of PostGIS has been people with large data analytics problems that crush their desktop GIS systems. Or people who similarly find that their geospatial problems are too large to run in R. Or Python.

These are data scientists or adjacent people. And when they ran into those problems, the first course of action would be to move the data and parts of the workload to a “real database server”.

This all made sense to me.

But recently, something transformative happened – Crunchy Data upgraded my work laptop to a MacBook Pro.

Suddenly a GEOS compile that previously took 20 minutes, took 45 seconds.

I now have processing power on my local laptop that previously was only available on a server. The MacBook Pro may be a leading indicator of this amount of power, but the trend is clear.

What does that mean for default architectures and tooling?

Well, for data science, it means that a program like DuckDB goes from being a bit of a curiosity, to being the default tool for handling large data processing workloads.

What is DuckDB? According to the web site, it is “an in-process SQL OLAP database management system”. That doesn’t sound like a revolution in data science (it sounds really confusing).

But consider what DuckDB rolls together:

  • A column-oriented processing engine that makes the most efficient possible use of the processors in modern computers. Parallelism to ensure all CPUs are made use of, and low-level optimizations to ensure each tick of those processors pushes as much data through the pipe as possible.
  • Wide ranging support for different data formats, so that integration can take place on-the-fly without requiring translation or sometimes even data download steps.

Having those things together makes it a data science power tool, and removes a lot of the prior incentive that data scientists had to move their data into “real” databases.

When they run into the limits of in-memory analysis in R or Python, they will instead serialize their data to local disk and use DuckDB to slam through the joins and filters that were blowing out their RAM before.

They will also take advantage of DuckDB’s ability to stream remote data from data lake object stores.

What, stream multi-gigabyte JSON files? Well, yes that’s possible, but it’s not where the action is.

The CPU is not the only laptop component that has been getting ridiculously powerful over the past few years. The network pipe that connects that laptop to the internet has also been getting both wider and lower latency with every passing year.

As the propect of streaming data for analysis has come into view, the formats for remote data have also evolved. Instead of JSON, which is relatively fluffy, and hard to efficiently filter, the Parquet format is becoming a new standard for data lakes.

Parquet is a binary format, that organizes the data into blocks for efficient subsetting and processing. A DuckDB query to a properly organized Parquet time series file might easily pull only records for 2 of 20 columns, and 1 day of 365, reducing a multi-gigabyte download to a handful of megabytes.

The huge rise in available local computation, and network connectivity is going to spawn some new standard architectures.

Imagine a “two tier” architecture where tier one is an HTTP object store and tier two is a Javascript single page app? The COG Explorer has already been around for a few years, and it’s just such a two tier application.

(For fun, recognize that an architecture where the data are stored in an access-optimized format, and access is via primitive file-system requests, while all the smarts are in the client-side visualization software is… the old workstation GIS model. Everything old is new again.)

The technology is fresh, but the trendline is pretty clear. See Kyle Barrron’s talk about GeoParquet and DeckGL for a taste of where we are going.

Meanwhile, I expect that a lot of the growth in PostGIS / PostgreSQL we have seen in the data science field will level out for a while, as the convenience of DuckDB takes over a lot of workloads.

The limitations of Parquet (efficient remote access limited to a handful of filter variables being the primary one, as will cojoint spatial/non-spatial filter and joins) will still leave use cases that require a “real” database, but a lot of people who used to reach for PostGIS will be reaching for Duck, and that is going to change a lot of architectures, some for the better, and some for the worse.

December 19, 2023 04:00 PM

Crunchy Data

PostGIS Clustering with DBSCAN

A common problem in geospatial analysis is extracting areas of density from point fields. PostGIS has four window clustering functions that take in geometries and return cluster numbers (or NULL for unclustered inputs), which apply different algorithms to the problem of grouping the geometries in the input partitions.

The ST_ClusterDBSCAN function in PostGIS is a quick and easy way to extract clusters from point data. DBSCAN specifically works with density and is well suited for population or density type spatial data. To demonstrate ST_ClusterDBSCAN I'm going to work with the geographic names data, specifically the schools, and show how we can quickly create a U.S. population density map.

Geographic Names Data

Let's explore clustering using geographic names data.

Create a table to hold the data. Note that the table is generating the points automatically from the longitude/latitude (EPSG:4326) and transforming into a planar projection for the USA (EPSG:5070).

CREATE TABLE geonames (
  geonameid integer,
  name text,
  asciiname text,
  alternatenames text,
  latitude float8,
  longitude float8,
  fclass char,
  fcode text,
  country text,
  cc2 text,
  admin1 text,
  admin2 text,
  admin3 text,
  admin4 text,
  population bigint,
  elevation integer,
  dem text,
  timezone text,
  modification date,
  geom geometry(point, 5070)
    GENERATED ALWAYS AS
      (ST_Transform(ST_Point(longitude, latitude, 4326),5070)) STORED
);

Now load the table. Note the super fun use of PROGRAM to pull data directly from the web and feed a COPY.

COPY geonames
  FROM PROGRAM '(curl http://download.geonames.org/export/dump/US.zip > /tmp/US.zip) && unzip -p /tmp/US.zip US.txt'
  WITH (FORMAT CSV, DELIMITER E'\t', HEADER false);

(This trick only works using the postgres superuser, since it involves calling a program and writing to system disk. If you do not have superuser access, download and unzip the US.TXT file by hand and load it using COPY from the file.)

USA schools

Finally, add a spatial index to the geom column.

CREATE INDEX geonames_geom_x
  ON geonames
  USING GIST (geom);

Schools

There are 434 distinct feature codes in the geonames table. We will restrict our analysis to just the 205,848 schools, with an fcode of SCH.

SELECT Count(DISTINCT fcode) FROM geonames;
SELECT Count(fcode) FROM geonames WHERE fcode = 'SCH';

Schools are an interesting feature to analyze because there's a nice strong correlation between the number of schools and the population. There's a lot of schools! But they are not uniformly distributed.

Midwest schools

If we zoom into the midwest, the concentration of schools in populated places pops out. We can use PostGIS to turn this distribution difference into a data set of populated places!

Clustering on Schools

The DBSCAN clustering algorithm is a "density based spatial clustering of applications with noise". The PostGIS ST_ClusterDBSCAN implementation is a window function that takes three parameters:

  • The geometries to be analyzed for clusters.
  • A 'eps' distance tolerance. Geometries must be within this distance to be added to a cluster.
  • A 'minpoints' count. If a point is within the 'eps' distance of 'minpoints' cluster members, it is a "core member" of the cluster.

An input geometry is added to a cluster if it is either:

  • A "core" geometry, that is within eps distance of at least minpoints input geometries (including itself); or
  • A "border" geometry, that is within eps distance of a core geometry.

How does this play out in practice?

If we zoom further into Chicago, around the suburban/exurban transition, the schools are about 1000 meters apart, sometimes more sometimes less, transitioning out to 2000 meters and more in the exurbs.

exurban school map

For our clusters, we will use:

  • A eps distance of 200m
  • A minpoints of 5
  • A partition on the state code (admin1) to cut down on the number of cluster numbers.
CREATE TABLE geonames_sch AS
  SELECT ST_ClusterDBScan(geom, 2000, 5)
           OVER (PARTITION BY admin1) AS cluster, *
  FROM geonames
  WHERE fcode = 'SCH';

The result looks like this, with each cluster given a distinct color, and un-clustered schools rendered transparent.

Midwest schools

The smaller clusters look a little arbitrary, but if we zoom in, we can see that even small population centers have been surfaced with this analytical technique.

Here is Kanakee, Illinois, neatly identified as a populated place by its cluster of schools.

Kanakee

Clusters to Points

Now that we have clusters, getting a populated place point is as simple as using the ST_Centroid function.

CREATE TABLE geonames_popplaces AS
  SELECT ST_Centroid(ST_Collect(geom))::geometry(Point, 5070) AS geom,
         Count(*) AS school_count,
         cluster, admin1
  FROM geonames_sch
  GROUP BY cluster, admin1

We have completed the analysis, converting the density difference in school locations into a set of derived populated place points.

Kanakee

Now for the whole population cluster map!

US Pop map

Quick recap

  • Create a table ST_ClusterDBScan
    • Set an eps for distance tolerance
    • Set a minpoints to reduce density
    • Partition on a different field to cut down on the number of cluster numbers.
  • Create a final table using the ST_Centroid

by Paul Ramsey (Paul.Ramsey@crunchydata.com) at December 19, 2023 01:00 PM

Crunchy Data

PostGIS Clustering with DBSCAN

A common problem in geospatial analysis is extracting areas of density from point fields. PostGIS has four window clustering functions that take in geometries and return cluster numbers (or NULL for unclustered inputs), which apply different algorithms to the problem of grouping the geometries in the input partitions.

The ST_ClusterDBSCAN function in PostGIS is a quick and easy way to extract clusters from point data. DBSCAN specifically works with density and is well suited for population or density type spatial data. To demonstrate ST_ClusterDBSCAN I'm going to work with the geographic names data, specifically the schools, and show how we can quickly create a U.S. population density map.

Geographic Names Data

Let's explore clustering using geographic names data.

Create a table to hold the data. Note that the table is generating the points automatically from the longitude/latitude (EPSG:4326) and transforming into a planar projection for the USA (EPSG:5070).

CREATE TABLE geonames (
  geonameid integer,
  name text,
  asciiname text,
  alternatenames text,
  latitude float8,
  longitude float8,
  fclass char,
  fcode text,
  country text,
  cc2 text,
  admin1 text,
  admin2 text,
  admin3 text,
  admin4 text,
  population bigint,
  elevation integer,
  dem text,
  timezone text,
  modification date,
  geom geometry(point, 5070)
    GENERATED ALWAYS AS
      (ST_Transform(ST_Point(longitude, latitude, 4326),5070)) STORED
);

Now load the table. Note the super fun use of PROGRAM to pull data directly from the web and feed a COPY.

COPY geonames
  FROM PROGRAM '(curl http://download.geonames.org/export/dump/US.zip > /tmp/US.zip) && unzip -p /tmp/US.zip US.txt'
  WITH (FORMAT CSV, DELIMITER E'\t', HEADER false);

(This trick only works using the postgres superuser, since it involves calling a program and writing to system disk. If you do not have superuser access, download and unzip the US.TXT file by hand and load it using COPY from the file.)

USA schools

Finally, add a spatial index to the geom column.

CREATE INDEX geonames_geom_x
  ON geonames
  USING GIST (geom);

Schools

There are 434 distinct feature codes in the geonames table. We will restrict our analysis to just the 205,848 schools, with an fcode of SCH.

SELECT Count(DISTINCT fcode) FROM geonames;
SELECT Count(fcode) FROM geonames WHERE fcode = 'SCH';

Schools are an interesting feature to analyze because there's a nice strong correlation between the number of schools and the population. There's a lot of schools! But they are not uniformly distributed.

Midwest schools

If we zoom into the midwest, the concentration of schools in populated places pops out. We can use PostGIS to turn this distribution difference into a data set of populated places!

Clustering on Schools

The DBSCAN clustering algorithm is a "density based spatial clustering of applications with noise". The PostGIS ST_ClusterDBSCAN implementation is a window function that takes three parameters:

  • The geometries to be analyzed for clusters.
  • A 'eps' distance tolerance. Geometries must be within this distance to be added to a cluster.
  • A 'minpoints' count. If a point is within the 'eps' distance of 'minpoints' cluster members, it is a "core member" of the cluster.

An input geometry is added to a cluster if it is either:

  • A "core" geometry, that is within eps distance of at least minpoints input geometries (including itself); or
  • A "border" geometry, that is within eps distance of a core geometry.

How does this play out in practice?

If we zoom further into Chicago, around the suburban/exurban transition, the schools are about 1000 meters apart, sometimes more sometimes less, transitioning out to 2000 meters and more in the exurbs.

exurban school map

For our clusters, we will use:

  • A eps distance of 2000m
  • A minpoints of 5
  • A partition on the state code (admin1) to cut down on the number of cluster numbers.
CREATE TABLE geonames_sch AS
  SELECT ST_ClusterDBScan(geom, 2000, 5)
           OVER (PARTITION BY admin1) AS cluster, *
  FROM geonames
  WHERE fcode = 'SCH';

The result looks like this, with each cluster given a distinct color, and un-clustered schools rendered transparent.

Midwest schools

The smaller clusters look a little arbitrary, but if we zoom in, we can see that even small population centers have been surfaced with this analytical technique.

Here is Kanakee, Illinois, neatly identified as a populated place by its cluster of schools.

Kanakee

Clusters to Points

Now that we have clusters, getting a populated place point is as simple as using the ST_Centroid function.

CREATE TABLE geonames_popplaces AS
  SELECT ST_Centroid(ST_Collect(geom))::geometry(Point, 5070) AS geom,
         Count(*) AS school_count,
         cluster, admin1
  FROM geonames_sch
  GROUP BY cluster, admin1

We have completed the analysis, converting the density difference in school locations into a set of derived populated place points.

Kanakee

Now for the whole population cluster map!

US Pop map

Quick recap

  • Create a table ST_ClusterDBScan
    • Set an eps for distance tolerance
    • Set a minpoints to reduce density
    • Partition on a different field to cut down on the number of cluster numbers.
  • Create a final table using the ST_Centroid

by Paul Ramsey (Paul.Ramsey@crunchydata.com) at December 19, 2023 01:00 PM

December 12, 2023

Paul Ramsey

Keynote @ FOSS4G NA 2023

Preparing the keynote for FOSS4G North America this year felt particularly difficult. I certainly sweated over it.

  • Audience was a problem. I wanted to talk about my usual thing, business models and economics, but the audience was going to be a mash of people new to the topic and people who has seen my spiel multiple times.
  • Length was a problem. Out of an excess of faith in my abilities, the organizers gave me a full hour long slot! That is a very long time to keep people’s attention and try to provide something interesting.

The way it all ended up was:

  • Cadging some older content from keynotes about business models, to bring new folks up to speed.
  • Mixing in some only slightly older content about cloud models.
  • Adding in some new thoughts about the way everyone can work together to make open source more sustainable (or at least less extractive) over the long term.

Here’s this year’s iteration.

The production of this kind of content is involved. The goal is to remain interesting over a relatively long period of time.

I have become increasingly opinionated about how to do that.

  • No freestyling. Blathering over bullet points is unfair to your audience. The aggregate time of an audience of 400 is very large. 5 minutes of your “um” and “ah” translates into 33 hours of dead audience time.
  • Get right to it. No mini-resume, no talking about your employer (unless you are really sneaky about it, like me 😉), this is about delivering ideas and facts that are relevant to the audience. Your introducer can handle your bona fides.
  • Have good content. The hardest part! (?) Do you have something thematic you can bookend the start and end with? Are there some interesting facts that much of the audience does not know yet? Are there some unappreciated implications? This is, presumably, why you were asked to keynote, so hopefully not too, too hard. This is the part that I worry over the most, because I really have no faith that what I have to say is actually going be interesting to an audience, no matter how much I gussy it up.
  • Work from a text. The way to avoid blather is to know exactly what you are going to say. At 140 words-per-minute speaking pace, a 55 minute talk is 7700 words, which coincidentally (not) is exactly how long my keynote text is.
  • Write a speech, not an article. You will have to say all those words! Avoid complicated sentence constructions. Keep sentences short. Take advantage of parallel constructions to make a point, drive a narrative, force a conclusion. (see?) Repeat yourself. Repeat yourself.
  • Perform, don’t read. Practice reading out loud. Get used to leaving longer gaps and get comfortable with silence. Practice modulating your voice. Louder, softer. Faster, slower. Drop. The. Hammer. Watch a gifted speaker like Barack Obama deliver a text. He isn’t ad libbing, he’s performing a prepared text. See what he does to make that sound spontaneous and interesting.
  • Visuals as complements, not copies. Your slides should complement and amplify your content, not recapitulate it. In the limit, you could do all-text slides, which just give the three-word summary of your current main point. (This classic Lessig talk is my favourite example.)
  • Visuals as extra channel. Keep changing up the visual. Use the slide notes space to get a feel for how long each slide should be up. (Hint, about 50 words on average.) Keeping slide duration low also helps in terms of using the per-slide speaker notes as low-end teleprompter (increase notes font size! reduce slide preview size!) from which you deliver your performance.

I originally started scripting talks because it allowed me to smooth out the quality of my talks. With a script, it wasn’t a crapshoot whether I had a good ad lib delivery or a bad one, I had a nice consistent level. From there, leveraging up to take advantage of the format to increase the talk quality was a natural step. Speakers like Lessig and Damian Conway remain my guide posts.

If you liked the keynote video and want to use the materials, the slides are available here under CC BY.

December 12, 2023 04:00 PM

December 07, 2023

Boston GIS (Regina Obe, Leo Hsu)

PostGIS Day 2023 Summary

PostGIS Day 2023 videos came out recently. PostGIS Day conference is always my favorite conference of the year because you get to see what people are doing all over the world, and it always has many many new tricks for using PostgreSQL and PostGIS family of extensions you had never thought of. Most importantly it's virtual, which makes it much easier for people to fit in their schedules than an on site conference. We really need more virtual conferences in the PostgreSQL community. Many many thanks to Crunchy Data for putting this together again, in particular to Elizabeth Christensen who did the hard behind the scenes work of corraling all the presenters and stepping in to give a talk herself, and my PostGIS partner in development Paul Ramsey who did the MC'ing probably with very little sleep, but still managed to be very energetic. Check out Elizabeth's summary of the event. Many of her highlights would have been mine too, so I'm going to skip those.

Continue reading "PostGIS Day 2023 Summary"

by Regina Obe (nospam@example.com) at December 07, 2023 02:58 AM

December 06, 2023

Crunchy Data

PostGIS Day 2023 Summary

We hosted our annual PostGIS day a couple weeks ago with some great talks on a big variety of topics within open-source GIS. Here is a summary of the themes I saw take shape across the day’s events that will point you towards the recordings, depending on your interests. A full playlist of PostGIS Day 2023 is available on our YouTube channel.

The Ideal GIS Stack

If you’ve spent time with developers this year you know that folks love to tell you the details and reasoning behind their tech stack and the GIS community is no different. PostGIS is really the engine behind the modern day open-source GIS installations and several presenters came to talk about their GIS architecture and preferred toolchains, backed by PostGIS.

The PRAM stack

Paul asked Rhys if the PRAM stack name is flattery or if he’s being trolled. I think you’ll see that Rhys’ talk is almost all flattery. He digs into using PostGIS with the ogr_fdw, pgRouting, PostgREST, Sqitch, and pgTAP for projects in the utilities industry. Rhys’ talk had some of the best screengrabs including this gem.

pgsvg charts

Modern GIS Analytics

Matt Forrest from Carto also had a great talk on the analytics workflows and his take on a modern GIS analytics stack. He had details on using Geoparquet, DuckDB, dbt, and H3. What connects everything, in Matt’s opinion is, SQL. He had some great slides, including this one (bonus points for putting PostGIS at the center of everything):

modern gis

PostgREST & making PostGIS your modern REST API

PostgREST turns your Postgres database, and PostGIS, into a REST API and it is pretty cool. Krishna has a great technical overview of PostgREST and how to get started with this, including some of the tricks in working with the Swagger API Platform.

Movement, Mobility, and Emergency Services

We had several really good talks from people working in the field to solve issues with getting people and things where they need to go. We had two speakers in the emergency services sector.

Laure-Hélène Bruneton from CamptoCamp talked about her work at NexSIS emergency operations management in France with her talk “Custom Road Network Contraction for Routing”. She digs into working with a large routing dataset and some tips for reducing size and making it more performant.

Randal Hale came to talk about his work with 911 in rural Tennessee, comparing using just the Geopackage files for 911 to using PostGIS. Without even storing data in a database, Randal is able to work with data, QGIS, and SQL all through a Geopackage file.

Vicky Vergara, the primary developer behind pgRouting came to talk about a special pgRouting project she has been developing for a UN initiative on how close people live to hospitals. She demonstrated how this data is accessible with open source tools and open data and you can see how important something like this would be for a developing nation.

Ford Motor Company’s research and development team presented on using PostGIS and pgRouting in their BlueCruise Hands-Free Highway Driving technology. I love that PostGIS is literally behind the wheel! Brendan Farrell came to talk about “Mapping Where the Data is Not”. This is when you’re dealing with missing pieces of data, denoting that, and using complementary geometry.

Initially released in early 2022, MobilityDB, has been getting more and more attention and hands-on love in 2023 and we ended up with two talks digging into some details. MobilityDB is an extension that is built on top of PostGIS and Postgres and expands the capabilities even more for moving geospatial objects. The main project leader, Prof Esteban Zimanyi, gave a great overview of how this fits in. Following Zimanyi’s talk was Wendell Turner with “Air Traffic Analysis with PostGIS and MobilityDB”. He used airplane, airport, and weather data to do demo research on everyone’s favorite topic, flight delays.

MobilityDB

Leveling up your SQL & PostGIS skills

We’re always blessed to have some of the best and brightest come to share their expertise. One great thing about PostGIS day is that it’s kind of a mix of hearing stories, learning about projects and tools with demos of technical skills outside of your day to day life.

I presented a talk on being a “Spatial DBA in a Pinch” as I’ve found lots of folks end up taking care of a database even though they didn’t really set out to do that. This is a basic talk, but if you’re new to PostGIS, there are handy tips about creating roles, looking at queries, and crating basic indexes. Paul added some really great tips on PostGIS performance too, which expand on some of the basics I presented.

Regina Obe always brings the coolest PostGIS examples and this year she did not disappoint her fans. She showed off a bunch of Star Wars graphics with her talk on “PostGIS surprise extensions”. If you want to show your kid some PostgreSQL over the holidays, Regina has all the code ready to go so you can run this yourself.

star wars postgis

We had a couple other really great technical deep dives. Benjamin Trigona-Harany talked about processing airplane flight data in “Trajectory Analysis Using PostGIS” (with some tips on getting free airline and flight path data). Crunchy Data’s own Martin Davis discussed some new PostGIS features for handling “Simple polygonal coverages”, including validation, union and simplification (which he calls the “killer app” for coverages).

simple polygonal

The role as GIS professionals

We got some nice breaks from technical talks to spend time thinking about our role as GIS professionals in this big wide world and what all of it means. Bonnie McClain came to talk to us on how “We are part of the infrastructure, not above it.” Bonnie has been doing amazing things in the GIS world by telling stories, looking at urban data through the lens of both GIS and human geography. Her talk digs into some of the things she uncovered on a recent project where she uses GIS data to build a Global and Healthy Sustainable Cities Indicator.

Brian Timoney talked about “Refactoring the Way We Talk About SQL”. This talk reviews open source software, value, and how we talk about our roles. He also gives an incredible demo of getting data straight from PostGIS through the pg_svg SVG extension and pg_featureserv and then into a spreadsheet.

pg_svg charts

Brian is a uniquely talented speaker with a love for this line of work that’s rarely communicated into words. His recent talk from FOSS4G NA on “You Can’t Get There From Here Alone” is also worth a mention here; it’s excellent (I had to hold back tears when I saw this in person).

Thank you!

Thanks to everyone who participated this year by speaking, coming to the event, chatting with us, or waiting until the videos are up on YouTube to catch on this year’s PostGIS Day. We had event attendees from more than 54 countries! We’ll be posting a call for papers next September so keep an eye out for that.

by Elizabeth Christensen (Elizabeth.Christensen@crunchydata.com) at December 06, 2023 01:00 PM

Crunchy Data

PostGIS Day 2023 Summary

We hosted our annual PostGIS day a couple weeks ago with some great talks on a big variety of topics within open-source GIS. Here is a summary of the themes I saw take shape across the day’s events that will point you towards the recordings, depending on your interests. A full playlist of PostGIS Day 2023 is available on our YouTube channel.

The Ideal GIS Stack

If you’ve spent time with developers this year you know that folks love to tell you the details and reasoning behind their tech stack and the GIS community is no different. PostGIS is really the engine behind the modern day open-source GIS installations and several presenters came to talk about their GIS architecture and preferred toolchains, backed by PostGIS.

The PRAM stack

Paul asked Rhys if the PRAM stack name is flattery or if he’s being trolled. I think you’ll see that Rhys’ talk is almost all flattery. He digs into using PostGIS with the ogr_fdw, pgRouting, PostgREST, Sqitch, and pgTAP for projects in the utilities industry. Rhys’ talk had some of the best screengrabs including this gem.

pgsvg charts

Modern GIS Analytics

Matt Forrest from Carto also had a great talk on the analytics workflows and his take on a modern GIS analytics stack. He had details on using Geoparquet, DuckDB, dbt, and H3. What connects everything, in Matt’s opinion is, SQL. He had some great slides, including this one (bonus points for putting PostGIS at the center of everything):

modern gis

PostgREST & making PostGIS your modern REST API

PostgREST turns your Postgres database, and PostGIS, into a REST API and it is pretty cool. Krishna has a great technical overview of PostgREST and how to get started with this, including some of the tricks in working with the Swagger API Platform.

Movement, Mobility, and Emergency Services

We had several really good talks from people working in the field to solve issues with getting people and things where they need to go. We had two speakers in the emergency services sector.

Laure-Hélène Bruneton from CamptoCamp talked about her work at NexSIS emergency operations management in France with her talk “Custom Road Network Contraction for Routing”. She digs into working with a large routing dataset and some tips for reducing size and making it more performant.

Randal Hale came to talk about his work with 911 in rural Tennessee, comparing using just the Geopackage files for 911 to using PostGIS. Without even storing data in a database, Randal is able to work with data, QGIS, and SQL all through a Geopackage file.

Vicky Vergara, the primary developer behind pgRouting came to talk about a special pgRouting project she has been developing for a UN initiative on how close people live to hospitals. She demonstrated how this data is accessible with open source tools and open data and you can see how important something like this would be for a developing nation.

Ford Motor Company’s research and development team presented on using PostGIS and pgRouting in their BlueCruise Hands-Free Highway Driving technology. I love that PostGIS is literally behind the wheel! Brendan Farrell came to talk about “Mapping Where the Data is Not”. This is when you’re dealing with missing pieces of data, denoting that, and using complementary geometry.

Initially released in early 2022, MobilityDB, has been getting more and more attention and hands-on love in 2023 and we ended up with two talks digging into some details. MobilityDB is an extension that is built on top of PostGIS and Postgres and expands the capabilities even more for moving geospatial objects. The main project leader, Prof Esteban Zimanyi, gave a great overview of how this fits in. Following Zimanyi’s talk was Wendell Turner with “Air Traffic Analysis with PostGIS and MobilityDB”. He used airplane, airport, and weather data to do demo research on everyone’s favorite topic, flight delays.

MobilityDB

Leveling up your SQL & PostGIS skills

We’re always blessed to have some of the best and brightest come to share their expertise. One great thing about PostGIS day is that it’s kind of a mix of hearing stories, learning about projects and tools with demos of technical skills outside of your day to day life.

I presented a talk on being a “Spatial DBA in a Pinch” as I’ve found lots of folks end up taking care of a database even though they didn’t really set out to do that. This is a basic talk, but if you’re new to PostGIS, there are handy tips about creating roles, looking at queries, and crating basic indexes. Paul added some really great tips on PostGIS performance too, which expand on some of the basics I presented.

Regina Obe always brings the coolest PostGIS examples and this year she did not disappoint her fans. She showed off a bunch of Star Wars graphics with her talk on “PostGIS surprise extensions”. If you want to show your kid some PostgreSQL over the holidays, Regina has all the code ready to go so you can run this yourself.

star wars postgis

We had a couple other really great technical deep dives. Benjamin Trigona-Harany talked about processing airplane flight data in “Trajectory Analysis Using PostGIS” (with some tips on getting free airline and flight path data). Crunchy Data’s own Martin Davis discussed some new PostGIS features for handling “Simple polygonal coverages”, including validation, union and simplification (which he calls the “killer app” for coverages).

simple polygonal

The role as GIS professionals

We got some nice breaks from technical talks to spend time thinking about our role as GIS professionals in this big wide world and what all of it means. Bonnie McClain came to talk to us on how “We are part of the infrastructure, not above it.” Bonnie has been doing amazing things in the GIS world by telling stories, looking at urban data through the lens of both GIS and human geography. Her talk digs into some of the things she uncovered on a recent project where she uses GIS data to build a Global and Healthy Sustainable Cities Indicator.

Brian Timoney talked about “Refactoring the Way We Talk About SQL”. This talk reviews open source software, value, and how we talk about our roles. He also gives an incredible demo of getting data straight from PostGIS through the pg_svg SVG extension and pg_featureserv and then into a spreadsheet.

pg_svg charts

Brian is a uniquely talented speaker with a love for this line of work that’s rarely communicated into words. His recent talk from FOSS4G NA on “You Can’t Get There From Here Alone” is also worth a mention here; it’s excellent (I had to hold back tears when I saw this in person).

Thank you!

Thanks to everyone who participated this year by speaking, coming to the event, chatting with us, or waiting until the videos are up on YouTube to catch on this year’s PostGIS Day. We had event attendees from more than 54 countries! We’ll be posting a call for papers next September so keep an eye out for that.

by Elizabeth Christensen (Elizabeth.Christensen@crunchydata.com) at December 06, 2023 01:00 PM

November 20, 2023

PostGIS Development

PostGIS Patch Releases

The PostGIS development team is pleased to provide bug fix and performance enhancements 3.4.1, 3.3.5, 3.2.6, 3.1.10, 3.0.10 for the 3.4, 3.3, 3.2, 3.1, 3.0 stable branches.

by Regina Obe at November 20, 2023 12:00 AM

September 11, 2023

Crunchy Data

Random Geometry Generation with PostGIS

A user on the postgis-users had an interesting question today: how to generate a geometry column in PostGIS with random points, linestrings, or polygons?

Random data is important for validating processing chains, analyses and reports. The best way to test a process is to feed it inputs!

Random Points

Random points is pretty easy -- define an area of interest and then use the PostgreSQL random() function to create the X and Y values in that area.

CREATE TABLE random_points AS
  WITH bounds AS (
    SELECT 0 AS origin_x,
           0 AS origin_y,
           80 AS width,
           80 AS height
  )
  SELECT ST_Point(width  * (random() - 0.5) + origin_x,
                  height * (random() - 0.5) + origin_y,
                  4326)::Geometry(Point, 4326) AS geom,
         id
    FROM bounds,
         generate_series(0, 100) AS id

random points

Filling a target shape with random points is a common use case, and there's a special function just for that, ST_GeneratePoints(). Here we generate points inside a circle created with ST_Buffer().

CREATE TABLE random_points AS
  SELECT ST_GeneratePoints(
  	ST_Buffer(
  		ST_Point(0, 0, 4326),
  		50),
  	100) AS geom

If you have PostgreSQL 16, you can use the brand new random_normal() function to generate coordinates with a central tendency.

CREATE TABLE random_normal_points AS
  WITH bounds AS (
    SELECT 0 AS origin_x,
           0 AS origin_y,
           80 AS width,
           80 AS height
  )
  SELECT ST_Point(random_normal(origin_x, width/4),
                  random_normal(origin_y, height/4),
                  4326)::Geometry(Point, 4326) AS geom,
         id
    FROM bounds,
         generate_series(0, 100) AS id

random normal points

For PostgreSQL versions before 16, here is a user-defined version of random_normal().
CREATE OR REPLACE FUNCTION random_normal(
  mean double precision DEFAULT 0.0,
  stddev double precision DEFAULT 1.0)
RETURNS double precision AS
$$
DECLARE
    u1 double precision;
    u2 double precision;
    z0 double precision;
    z1 double precision;
BEGIN
    u1 := random();
    u2 := random();

    z0 := sqrt(-2.0 * ln(u1)) * cos(2.0 * pi() * u2);
    z1 := sqrt(-2.0 * ln(u1)) * sin(2.0 * pi() * u2);

    RETURN mean + (stddev * z0);
END;
$$ LANGUAGE plpgsql;

Random Linestrings

Linestrings are a little harder, because they involve more points, and aesthetically we like to avoid self-crossings of lines.

Two-point linestrings are pretty easy to generate with ST_MakeLine() -- just generate twice as many random points, and use them as the start and end points of the linestrings.

CREATE TABLE random_2point_lines AS
  WITH bounds AS (
    SELECT 0 AS origin_x, 80 AS width,
           0 AS origin_y, 80 AS height
  )
  SELECT ST_MakeLine(
  	       ST_Point(random_normal(origin_x, width/4),
                    random_normal(origin_y, height/4),
                    4326),
  	       ST_Point(random_normal(origin_x, width/4),
                    random_normal(origin_y, height/4),
                    4326))::Geometry(LineString, 4326) AS geom,
         id
    FROM bounds,
         generate_series(0, 100) AS id

random lines 2

Multi-point random linestrings are harder, at least while avoiding self-intersections, and there are a lot of potential approaches. While a recursive CTE could probably do it, an imperative approach using PL/PgSQL is more readable.

The generate_random_linestring() function starts with an empty linestring, and then adds on new segments one at a time, changing the direction of the line with each new segment.

Here is the full generate_random_linestring() definition.
CREATE OR REPLACE FUNCTION generate_random_linestring(
    start_point geometry(Point))
  RETURNS geometry(LineString, 4326) AS
$$
DECLARE
  num_segments integer := 10; -- Number of segments in the linestring
  deviation_max float := radians(45); -- Maximum deviation
  random_point geometry(Point);
  deviation float;
  direction float := 2 * pi() * random();
  segment_length float := 5; -- Length of each segment (adjust as needed)
  i integer;
  result geometry(LineString) := 'SRID=4326;LINESTRING EMPTY';
BEGIN
  result := ST_AddPoint(result, start_point);
  FOR i IN 1..num_segments LOOP
    -- Generate a random angle within the specified deviation
    deviation := 2 * deviation_max * random() - deviation_max;
    direction := direction + deviation;

    -- Calculate the coordinates of the next point
    random_point := ST_Point(
        ST_X(start_point) + cos(direction) * segment_length,
        ST_Y(start_point) + sin(direction) * segment_length,
        ST_SRID(start_point)
      );

    -- Add the point to the linestring
    result := ST_AddPoint(result, random_point);

    -- Update the start point for the next segment
    start_point := random_point;

    END LOOP;

    RETURN result;
END;
$$
LANGUAGE plpgsql;

We can use the generate_random_linestring() function now to turn random start points (created in the usual way) into fully random squiggly lines!

CREATE TABLE random_lines AS
  WITH bounds AS (
    SELECT 0 AS origin_x, 80 AS width,
           0 AS origin_y, 80 AS height
  )
  SELECT id,
    generate_random_linestring(
  	  ST_Point(random_normal(origin_x, width/4),
               random_normal(origin_y, height/4),
               4326))::Geometry(LineString, 4326) AS geom
    FROM bounds,
         generate_series(1, 100) AS id;

random lines

Random Polygons

At the simplest level, a set of random boxes is a set of random polygons, but that's pretty boring, and easy to generate using ST_MakeEnvelope().

CREATE TABLE random_boxes AS
  WITH bounds AS (
    SELECT 0 AS origin_x, 80 AS width,
           0 AS origin_y, 80 AS height
  )
  SELECT ST_MakeEnvelope(
  	       random_normal(origin_x, width/4),
  	       random_normal(origin_y, height/4),
  	       random_normal(origin_x, width/4),
  	       random_normal(origin_y, height/4)
  	     )::Geometry(Polygon, 4326) AS geom,
         id
    FROM bounds,
         generate_series(0, 20) AS id

random boxes

But more interesting polygons have curvy and convex shapes, how can we generate those?

Random Polygons with Concave Hull

One way is to extract a polygon from a set of random points, using ST_ConcaveHull(), and then applying an "erode and dilate" effect to make the curves more pleasantly round.

We start with a random center point for each polygon, and create a circle with ST_Buffer().

hull 1

Then use ST_GeneratePoints() to fill the circle with some random points -- not too many, so we get a nice jagged result.

hull 2

Then use ST_ConcaveHull() to trace a "boundary" around those points.

hull 3

Then apply a negative buffer, to erode the shape.

hull 4

And finally a positive buffer to dilate it back out again.

hull 5

Generating multiple hulls involves stringing together all the above operations with CTEs or subqueries.

Here is the full query to generate multiple polygons with the concave hull method.
CREATE TABLE random_hulls AS
  WITH bounds AS (
    SELECT 0 AS origin_x,
           0 AS origin_y,
           80 AS width,
           80 AS height
  ),
  polypts AS (
    SELECT ST_Point(random_normal(origin_x, width/2),
  	                random_normal(origin_y, width/2),
                    4326)::Geometry(Point, 4326) AS geom,
           polyid
    FROM bounds,
         generate_series(1,10) AS polyid
  ),
  pts AS (
    SELECT ST_GeneratePoints(ST_Buffer(geom, width/5), 20) AS geom,
           polyid
    FROM bounds,
         polypts
  )
  SELECT ST_Multi(ST_Buffer(
  	       ST_Buffer(
  	       	 ST_ConcaveHull(geom, 0.3),
  	       	 -2.0),
  	       3.0))::Geometry(MultiPolygon, 4326) AS geom,
         polyid
    FROM pts;

random hulls

Random Polygons with Voronoi Polygons

Another approach is to again start with random points, but use the Voronoi diagram as the basis of the polygon.

Start with a center point and buffer circle.

voronoi 2

Generate random points in the circle.

voronoi 3

Use the ST_VoronoiPolygons() function to generate polygons that subdivide the space using the random points as seeds.

voronoi 4

Filter just the polygons that are fully contained in the originating circle.

voronoi 5

And then use ST_Union() to merge those polygons into a single output shape.

voronoi 6

Generating multiple hulls again involves stringing together the above operations with CTEs or subqueries.

Here is the full query to generate multiple polygons with the Voronoi method.
CREATE TABLE random_delaunay_hulls AS
  WITH bounds AS (
    SELECT 0 AS origin_x,
           0 AS origin_y,
           80 AS width,
           80 AS height
  ),
  polypts AS (
    SELECT ST_Point(random_normal(origin_x, width/2),
  	                random_normal(origin_y, width/2),
                    4326)::Geometry(Point, 4326) AS geom,
           polyid
    FROM bounds,
         generate_series(1,20) AS polyid
  ),
  voronois AS (
    SELECT ST_VoronoiPolygons(
    	     ST_GeneratePoints(ST_Buffer(geom, width/5), 10)
    	   ) AS geom,
           ST_Buffer(geom, width/5) AS geom_clip,
           polyid
    FROM bounds,
         polypts
  ),
  cells AS (
  	SELECT (ST_Dump(geom)).geom, polyid, geom_clip
  	FROM voronois
  )
  SELECT ST_Union(geom)::Geometry(Polygon, 4326) AS geom, polyid
  FROM cells
  WHERE ST_Contains(geom_clip, geom)
  GROUP BY polyid;

random delaunay

by Paul Ramsey (Paul.Ramsey@crunchydata.com) at September 11, 2023 01:00 PM

Crunchy Data

Random Geometry Generation with PostGIS

A user on the postgis-users had an interesting question today: how to generate a geometry column in PostGIS with random points, linestrings, or polygons?

Random data is important for validating processing chains, analyses and reports. The best way to test a process is to feed it inputs!

Random Points

Random points is pretty easy -- define an area of interest and then use the PostgreSQL random() function to create the X and Y values in that area.

CREATE TABLE random_points AS
  WITH bounds AS (
    SELECT 0 AS origin_x,
           0 AS origin_y,
           80 AS width,
           80 AS height
  )
  SELECT ST_Point(width  * (random() - 0.5) + origin_x,
                  height * (random() - 0.5) + origin_y,
                  4326)::Geometry(Point, 4326) AS geom,
         id
    FROM bounds,
         generate_series(0, 100) AS id

random points

Filling a target shape with random points is a common use case, and there's a special function just for that, ST_GeneratePoints(). Here we generate points inside a circle created with ST_Buffer().

CREATE TABLE random_points AS
  SELECT ST_GeneratePoints(
  	ST_Buffer(
  		ST_Point(0, 0, 4326),
  		50),
  	100) AS geom

If you have PostgreSQL 16, you can use the brand new random_normal() function to generate coordinates with a central tendency.

CREATE TABLE random_normal_points AS
  WITH bounds AS (
    SELECT 0 AS origin_x,
           0 AS origin_y,
           80 AS width,
           80 AS height
  )
  SELECT ST_Point(random_normal(origin_x, width/4),
                  random_normal(origin_y, height/4),
                  4326)::Geometry(Point, 4326) AS geom,
         id
    FROM bounds,
         generate_series(0, 100) AS id

random normal points

For PostgreSQL versions before 16, here is a user-defined version of random_normal().
CREATE OR REPLACE FUNCTION random_normal(
  mean double precision DEFAULT 0.0,
  stddev double precision DEFAULT 1.0)
RETURNS double precision AS
$$
DECLARE
    u1 double precision;
    u2 double precision;
    z0 double precision;
    z1 double precision;
BEGIN
    u1 := random();
    u2 := random();

    z0 := sqrt(-2.0 * ln(u1)) * cos(2.0 * pi() * u2);
    z1 := sqrt(-2.0 * ln(u1)) * sin(2.0 * pi() * u2);

    RETURN mean + (stddev * z0);
END;
$$ LANGUAGE plpgsql;

Random Linestrings

Linestrings are a little harder, because they involve more points, and aesthetically we like to avoid self-crossings of lines.

Two-point linestrings are pretty easy to generate with ST_MakeLine() -- just generate twice as many random points, and use them as the start and end points of the linestrings.

CREATE TABLE random_2point_lines AS
  WITH bounds AS (
    SELECT 0 AS origin_x, 80 AS width,
           0 AS origin_y, 80 AS height
  )
  SELECT ST_MakeLine(
  	       ST_Point(random_normal(origin_x, width/4),
                    random_normal(origin_y, height/4),
                    4326),
  	       ST_Point(random_normal(origin_x, width/4),
                    random_normal(origin_y, height/4),
                    4326))::Geometry(LineString, 4326) AS geom,
         id
    FROM bounds,
         generate_series(0, 100) AS id

random lines 2

Multi-point random linestrings are harder, at least while avoiding self-intersections, and there are a lot of potential approaches. While a recursive CTE could probably do it, an imperative approach using PL/PgSQL is more readable.

The generate_random_linestring() function starts with an empty linestring, and then adds on new segments one at a time, changing the direction of the line with each new segment.

Here is the full generate_random_linestring() definition.
CREATE OR REPLACE FUNCTION generate_random_linestring(
    start_point geometry(Point))
  RETURNS geometry(LineString, 4326) AS
$$
DECLARE
  num_segments integer := 10; -- Number of segments in the linestring
  deviation_max float := radians(45); -- Maximum deviation
  random_point geometry(Point);
  deviation float;
  direction float := 2 * pi() * random();
  segment_length float := 5; -- Length of each segment (adjust as needed)
  i integer;
  result geometry(LineString) := 'SRID=4326;LINESTRING EMPTY';
BEGIN
  result := ST_AddPoint(result, start_point);
  FOR i IN 1..num_segments LOOP
    -- Generate a random angle within the specified deviation
    deviation := 2 * deviation_max * random() - deviation_max;
    direction := direction + deviation;

    -- Calculate the coordinates of the next point
    random_point := ST_Point(
        ST_X(start_point) + cos(direction) * segment_length,
        ST_Y(start_point) + sin(direction) * segment_length,
        ST_SRID(start_point)
      );

    -- Add the point to the linestring
    result := ST_AddPoint(result, random_point);

    -- Update the start point for the next segment
    start_point := random_point;

    END LOOP;

    RETURN result;
END;
$$
LANGUAGE plpgsql;

We can use the generate_random_linestring() function now to turn random start points (created in the usual way) into fully random squiggly lines!

CREATE TABLE random_lines AS
  WITH bounds AS (
    SELECT 0 AS origin_x, 80 AS width,
           0 AS origin_y, 80 AS height
  )
  SELECT id,
    generate_random_linestring(
  	  ST_Point(random_normal(origin_x, width/4),
               random_normal(origin_y, height/4),
               4326))::Geometry(LineString, 4326) AS geom
    FROM bounds,
         generate_series(1, 100) AS id;

random lines

Random Polygons

At the simplest level, a set of random boxes is a set of random polygons, but that's pretty boring, and easy to generate using ST_MakeEnvelope().

CREATE TABLE random_boxes AS
  WITH bounds AS (
    SELECT 0 AS origin_x, 80 AS width,
           0 AS origin_y, 80 AS height
  )
  SELECT ST_MakeEnvelope(
  	       random_normal(origin_x, width/4),
  	       random_normal(origin_y, height/4),
  	       random_normal(origin_x, width/4),
  	       random_normal(origin_y, height/4)
  	     )::Geometry(Polygon, 4326) AS geom,
         id
    FROM bounds,
         generate_series(0, 20) AS id

random boxes

But more interesting polygons have curvy and convex shapes, how can we generate those?

Random Polygons with Concave Hull

One way is to extract a polygon from a set of random points, using ST_ConcaveHull(), and then applying an "erode and dilate" effect to make the curves more pleasantly round.

We start with a random center point for each polygon, and create a circle with ST_Buffer().

hull 1

Then use ST_GeneratePoints() to fill the circle with some random points -- not too many, so we get a nice jagged result.

hull 2

Then use ST_ConcaveHull() to trace a "boundary" around those points.

hull 3

Then apply a negative buffer, to erode the shape.

hull 4

And finally a positive buffer to dilate it back out again.

hull 5

Generating multiple hulls involves stringing together all the above operations with CTEs or subqueries.

Here is the full query to generate multiple polygons with the concave hull method.
CREATE TABLE random_hulls AS
  WITH bounds AS (
    SELECT 0 AS origin_x,
           0 AS origin_y,
           80 AS width,
           80 AS height
  ),
  polypts AS (
    SELECT ST_Point(random_normal(origin_x, width/2),
  	                random_normal(origin_y, width/2),
                    4326)::Geometry(Point, 4326) AS geom,
           polyid
    FROM bounds,
         generate_series(1,10) AS polyid
  ),
  pts AS (
    SELECT ST_GeneratePoints(ST_Buffer(geom, width/5), 20) AS geom,
           polyid
    FROM bounds,
         polypts
  )
  SELECT ST_Multi(ST_Buffer(
  	       ST_Buffer(
  	       	 ST_ConcaveHull(geom, 0.3),
  	       	 -2.0),
  	       3.0))::Geometry(MultiPolygon, 4326) AS geom,
         polyid
    FROM pts;

random hulls

Random Polygons with Voronoi Polygons

Another approach is to again start with random points, but use the Voronoi diagram as the basis of the polygon.

Start with a center point and buffer circle.

voronoi 2

Generate random points in the circle.

voronoi 3

Use the ST_VoronoiPolygons() function to generate polygons that subdivide the space using the random points as seeds.

voronoi 4

Filter just the polygons that are fully contained in the originating circle.

voronoi 5

And then use ST_Union() to merge those polygons into a single output shape.

voronoi 6

Generating multiple hulls again involves stringing together the above operations with CTEs or subqueries.

Here is the full query to generate multiple polygons with the Voronoi method.
CREATE TABLE random_delaunay_hulls AS
  WITH bounds AS (
    SELECT 0 AS origin_x,
           0 AS origin_y,
           80 AS width,
           80 AS height
  ),
  polypts AS (
    SELECT ST_Point(random_normal(origin_x, width/2),
  	                random_normal(origin_y, width/2),
                    4326)::Geometry(Point, 4326) AS geom,
           polyid
    FROM bounds,
         generate_series(1,20) AS polyid
  ),
  voronois AS (
    SELECT ST_VoronoiPolygons(
    	     ST_GeneratePoints(ST_Buffer(geom, width/5), 10)
    	   ) AS geom,
           ST_Buffer(geom, width/5) AS geom_clip,
           polyid
    FROM bounds,
         polypts
  ),
  cells AS (
  	SELECT (ST_Dump(geom)).geom, polyid, geom_clip
  	FROM voronois
  )
  SELECT ST_Union(geom)::Geometry(Polygon, 4326) AS geom, polyid
  FROM cells
  WHERE ST_Contains(geom_clip, geom)
  GROUP BY polyid;

random delaunay

by Paul Ramsey (Paul.Ramsey@crunchydata.com) at September 11, 2023 01:00 PM

September 10, 2023

Boston GIS (Regina Obe, Leo Hsu)

Why People care about PostGIS and Postgres and FOSS4GNA

Paul Ramsey and I recently had a Fireside chat with Path to Cituscon. Checkout the Podcast Why People care about PostGIS and Postgres. There were a surprising number of funny moments and very insightful stuff.

It was a great fireside chat but without the fireplace. We covered the birth and progression of PostGIS for the past 20 years and the trajectory with PostgreSQL. We also learned of Paul's plans to revolutionize PostGIS which was new to me. We covered many other side-line topics, like QGIS whose birth was inspired by PostGIS. We covered pgRouting and mobilitydb which are two other PostgreSQL extension projects that extend PostGIS.

We also managed to fall into the Large Language Model conversation of which Paul and I are on different sides of the fence on.

Continue reading "Why People care about PostGIS and Postgres and FOSS4GNA"

by Regina Obe (nospam@example.com) at September 10, 2023 03:22 AM

August 15, 2023

PostGIS Development

PostGIS 3.4.0

The PostGIS Team is pleased to release PostGIS 3.4.0! This version works with versions PostgreSQL 12-16, GEOS 3.6 or higher, and Proj 6.1+. To take advantage of all features, GEOS 3.12+ is needed. To take advantage of all SFCGAL features, SFCGAL 1.4.1+ is needed.

3.4.0

This release is a major release, it includes bug fixes since PostGIS 3.3.4 and new features.

by Regina Obe at August 15, 2023 12:00 AM

August 05, 2023

PostGIS Development

PostGIS 3.4.0rc1

The PostGIS Team is pleased to release PostGIS 3.4.0rc1! Best Served with PostgreSQL 16 Beta2 and GEOS 3.12.0.

This version requires PostgreSQL 12 or higher, GEOS 3.6 or higher, and Proj 6.1+. To take advantage of all features, GEOS 3.12+ is needed. To take advantage of all SFCGAL features, SFCGAL 1.4.1+ is needed.

3.4.0rc1

This release is a release candidate of a major release, it includes bug fixes since PostGIS 3.3.4 and new features.

by Regina Obe at August 05, 2023 12:00 AM

July 29, 2023

PostGIS Development

PostGIS 3.4.0beta2

The PostGIS Team is pleased to release PostGIS 3.4.0beta2! Best Served with PostgreSQL 16 Beta2 and GEOS 3.12.0.

This version requires PostgreSQL 12 or higher, GEOS 3.6 or higher, and Proj 6.1+. To take advantage of all features, GEOS 3.12+ is needed. To take advantage of all SFCGAL features, SFCGAL 1.4.1+ is needed.

3.4.0beta2

This release is a beta of a major release, it includes bug fixes since PostGIS 3.3.4 and new features.

by Regina Obe at July 29, 2023 12:00 AM

July 28, 2023

PostGIS Development

PostGIS 3.3.4 Patch Release

The PostGIS development team is pleased to announce bug fix release 3.3.4, mostly focused on Topology fixes.

by Sandro Santilli at July 28, 2023 12:00 AM

July 14, 2023

PostGIS Development

PostGIS 3.4.0beta1

The PostGIS Team is pleased to release PostGIS 3.4.0beta1! Best Served with PostgreSQL 16 Beta2 and GEOS 3.12.0.

This version requires PostgreSQL 12 or higher, GEOS 3.6 or higher, and Proj 6.1+. To take advantage of all features, GEOS 3.12+ is needed. To take advantage of all SFCGAL features, SFCGAL 1.4.1+ is needed.

3.4.0beta1

This release is a beta of a major release, it includes bug fixes since PostGIS 3.3.3 and new features.

by Regina Obe at July 14, 2023 12:00 AM

July 08, 2023

Paul Ramsey

MapScaping Podcast: Pg_EventServ

Last month I got to record a couple podcast episodes with the MapScaping Podcast’s Daniel O’Donohue. One of them was on the benefits and many pitfalls of putting rasters into a relational database, and the other was about real-time events and pushing data change information out to web clients!

TL;DR: geospatial data tends to be more “visible” to end user clients, so communicating change to multiple clients in real time can be useful for “common operating” situations.

I also recorded a presentation about pg_eventserv for PostGIS Day 2022.

July 08, 2023 12:00 AM

June 03, 2023

Boston GIS (Regina Obe, Leo Hsu)

PostGIS Bundle 3.3.3 for Windows with MobilityDB

I recently released PostGIS 3.3.3. bundle for Windows which is available on application stackbuilder and OSGeo download site for PostgreSQL 11 - 15. If you are running PostgreSQL 12 or above, you get an additional bonus extension MobilityDB which is an extension that leverages PostGIS geometry and geography types and introduces several more spatial-temporal types and functions specifically targeted for managing objects in motion.

What kind of management, think of getting the average speed a train is moving at a segment in time or collisions in time, without any long SQL code. Just use a function on the trip path, and viola. Think about storing GPS data very compactly in a singe row /column with time and being able to ask very complex questions with very little SQL. True PostGIS can do some of this using geometry with Measure (geometryM) geometry types, but you have to deal with that craziness of converting M back to timestamps, which mobilitydb temporal types automatically encode as true PostgreSQL timestamp types.

Anita Graser, of QGIS and Moving Pandas fame, has written several posts about it such as: Visualizing Trajectories with QGIS and mobilitydb and Detecting close encounters using MobilityDB 1.0.

Continue reading "PostGIS Bundle 3.3.3 for Windows with MobilityDB"

by Regina Obe (nospam@example.com) at June 03, 2023 12:34 AM

May 30, 2023

Crunchy Data

SVG Images from Postgres

PostGIS excels at storing, manipulating and analyzing geospatial data. At some point it's usually desired to convert raw spatial data into a two-dimensional representation to utilize the integrative capabilities of the human visual cortex. In other words, to see things on a map.

PostGIS is a popular backend for mapping technology, so there are many options to choose from to create maps. Data can be rendered to a raster image using a web map server like GeoServer or MapServer; it can be converted to GeoJSON or vector tiles via servers such as pg_featureserv and pg_tileserv and then shipped to a Web browser for rendering by a library such as OpenLayers, MapLibre or Leaflet; or a GIS application such as QGIS can connect to the database and create richly-styled maps from spatial queries.

What these options have in common is that they require external tools which need to be installed, configured and maintained in a separate environment. This can introduce unwanted complexity to a geospatial architecture.

This post presents a simple way to generate maps entirely within the database, with no external infrastructure required.

SVG for the win

A great way to display vector data is to use the Scalable Vector Graphic (SVG) format. It provides rich functionality for displaying and styling geometric shapes. SVG is widely supported by web browsers and other tools.

By including CSS and Javascript it's possible to add advanced styling, custom popups, dynamic behaviour and interaction with other web page elements.

Introducing pg-svg

Generating SVG "by hand" is difficult. It requires detailed knowledge of the SVG specification, and constructing a complex text format in SQL is highly error-prone. While PostGIS has had the function ST_AsSVG for years, it only produces the SVG path data attribute value. Much more is required to create a fully-styled SVG document.

The PL/pgSQL library pg-svg solves this problem! It makes it easy to convert PostGIS data into styled SVG documents. The library provides a simple API as a set of PL/pgSQL functions which allow creating an SVG document in a single SQL query. Best of all, this installs with a set of functions, nothing else required!

Example map of US high points

The best way to understand how pg-svg works is to see an example. We'll create an SVG map of the United States showing the highest point in each state. The map has the following features:

  • All 50 states are shown, with Alaska and Hawaii transformed to better fit the map
  • States are labeled, and filled with a gradient
  • High points are shown at their location by triangles whose color and size indicate the height of the high point.
  • Tooltips provide more information about states and highpoints.

The resulting map looks like this (to see tooltips open the raw image):

The SQL query to generate the map is here. It can be downloaded and run using psql:

psql -A -t -o us-highpt.svg  < us-highpt-svg.sql

The SVG output us-highpt.svg can be viewed in any web browser.

How it Works

Let's break the query down to see how the data is prepared and then rendered to SVG. A dataset of US states in geodetic coordinate system (WGS84, SRID = 4326) is required. We used the Natural Earth states and provinces data available here. It is loaded into a table ne.admin_1_state_prov with the following command:

shp2pgsql -c -D -s 4326 -i -I ne_10m_admin_1_states_provinces.shp ne.admin_1_state_prov | psql

The query uses the SQL WITH construct to organize processing into simple, modular steps. We'll describe each one in turn.

Select US state features

First, the US state features are selected from the Natural Earth boundaries table ne.admin_1_state_prov.

us_state AS (SELECT name, abbrev, postal, geom
  FROM ne.admin_1_state_prov
  WHERE adm0_a3 = 'USA')

Make a US state map

Next, the map is made more compact by realigning the far-flung states of Alaska and Hawaii.
This is done using PostGIS affine transformation functions. The states are made more proportionate using ST_Scale, and moved closer to the lower 48 using ST_Translate. The scaling is done around the location of the state high point, to make it easy to apply the same transformation to the high point feature.

,us_map AS (SELECT name, abbrev, postal,
    -- transform AK and HI to make them fit map
    CASE WHEN name = 'Alaska' THEN
      ST_Translate(ST_Scale(
        ST_Intersection( ST_GeometryN(geom,1), 'SRID=4326;POLYGON ((-141 80, -141 50, -170 50, -170 80, -141 80))'),
        'POINT(0.5 0.75)', 'POINT(-151.007222 63.069444)'::geometry), 18, -17)
    WHEN name = 'Hawaii' THEN
      ST_Translate(ST_Scale(
        ST_Intersection(geom, 'SRID=4326;POLYGON ((-161 23, -154 23, -154 18, -161 18, -161 23))'),
        'POINT(3 3)', 'POINT(-155.468333 19.821028)'::geometry), 32, 10)
    ELSE geom END AS geom
  FROM us_state)

High Points of US states

Data for the highest point in each state is provided as an inline table of values:

,high_pt(name, state, hgt_m, hgt_ft, lon, lat) AS (VALUES
 ('Denali',              'AK', 6198, 20320,  -151.007222,63.069444)
,('Mount Whitney',       'CA', 4421, 14505,  -118.292,36.578583)
...
,('Britton Hill',        'FL',  105,   345,  -86.281944,30.988333)
)

Prepare High Point symbols

The next query does several things:

  • translates the lon and lat location for Alaska and Hawaii high points to match the transformation applied to the state geometry
  • computes the symHeight attribute for the height of the high point triangle symbol
  • assigns a fill color value to each high point based on the height
  • uses ORDER BY to sort the high points by latitude, so that their symbols overlap correctly when rendered
,highpt_shape AS (SELECT name, state, hgt_ft,
    -- translate high points to match shifted states
    CASE WHEN state = 'AK' THEN lon + 18
      WHEN state = 'HI' THEN lon + 32
      ELSE lon END AS lon,
    CASE WHEN state = 'AK' THEN lat - 17
      WHEN state = 'HI' THEN lat + 10
      ELSE lat END AS lat,
    (2.0 * hgt_ft) / 15000.0 + 0.5 AS symHeight,
    CASE WHEN hgt_ft > 14000 THEN '#ffffff'
         WHEN hgt_ft >  7000 THEN '#aaaaaa'
         WHEN hgt_ft >  5000 THEN '#ff8800'
         WHEN hgt_ft >  2000 THEN '#ffff44'
         WHEN hgt_ft >  1000 THEN '#aaffaa'
                             ELSE '#558800'
    END AS clr
  FROM high_pt ORDER BY lat DESC)

Generate SVG elements

The previous queries transformed the raw data into a form suitable for rendering.
Now we get to see pg-svg in action! The next query generates the SVG text for each output image element, as separate records in a result set called shapes.

The SVG elements are generated in the order in which they are drawn - states and labels first, with high-point symbols on top. Let's break it down:

SVG for states

The first subquery produces SVG shapes from the state geometries. The svgShape function produces an SVG shape element for any PostGIS geometry. It also provides optional parameters supporting other capabilities of SVG. Here title specifies that the state name is displayed as a tooltip, and style specifies the styling of the shape. Styling in SVG can be provided using properties defined in the Cascaded Style Sheets (CSS) specification. pg-svg provides the svgStyle function to make it easy to specify the names and values of CSS styling properties.

Note that the fill property value is a URL instead of a color specifier. This refers to an SVG gradient fill which is defined later.

The state geometry is also included in the subquery result set, for reasons which will be discussed below.

,shapes AS (
  -- State shapes
  SELECT geom, svgShape( geom,
    title => name,
    style => svgStyle(  'stroke', '#ffffff',
                        'stroke-width', 0.1::text,
                        'fill', 'url(#state)',
                        'stroke-linejoin', 'round' ) )
    svg FROM us_map

SVG for state labels

Labels for state abbreviations are positioned at the point produced by the ST_PointOnSurface function. (Alternatively, ST_MaximumInscribedCircle could be used.) The SVG is generated by the svgText function, using the specified styling.

  UNION ALL
  -- State names
  SELECT NULL, svgText( ST_PointOnSurface( geom ), abbrev,
    style => svgStyle(  'fill', '#6666ff', 'text-anchor', 'middle', 'font', '0.8px sans-serif' ) )
    svg FROM us_map

SVG for high point symbols

The high point features are displayed as triangular symbols. We use the convenient svgPolygon function with a simple array of ordinates specifying a triangle based at the high point location, with height given by the previously computed svgHeight column. The title is provided for a tooltip, and the styling uses the computed clr attribute as the fill.

  UNION ALL
  -- High point triangles
  SELECT NULL, svgPolygon( ARRAY[ lon-0.5, -lat, lon+0.5, -lat, lon, -lat-symHeight ],
    title => name || ' ' || state || ' - ' || hgt_ft || ' ft',
    style => svgStyle(  'stroke', '#000000',
                        'stroke-width', 0.1::text,
                        'fill', clr  ) )
    svg FROM highpt_shape
)

Produce final SVG image

The generated shape elements need to be wrapped in an <svg> document element. This is handled by the svgDoc function.

The viewable extent of the SVG data needs to be provided by the viewbox parameter. The most common case is to display all of the rendered data. An easy way to determine this is to apply the PostGIS ST_Exrtent aggregate function to the input data (this is why we included the geom column as well as the svg text column). We can include a border by enlarging the extent using the ST_Expand function. The function svgViewBox converts the PostGIS geometry for the extent into SVG format.

We also include a definition for an SVG linear gradient to be used as the fill style for the state features.

SELECT svgDoc( array_agg( svg ),
    viewbox => svgViewbox( ST_Expand( ST_Extent(geom), 2)),
    def => svgLinearGradient('state', '#8080ff', '#c0c0ff')
  ) AS svg FROM shapes;

The output from svgDoc is a text value which can be used anywhere that SVG is supported.

More to Explore

We've shown how the pg-svg SQL function library lets you easily generate map images from PostGIS data right in the database. This can be used as a simple ad-hoc way of visualizing spatial data. Or, it could be embedded in a larger system to automate repetitive map generation workflows.

Although SVG is a natural fit for vector data, there may be situations where producing a map as a bitmap (raster) image makes sense.
For a way of generating raster maps right in the database see this PostGIS Day 2022 presentation. This would be especially appealing where the map is displaying data stored using PostGIS raster data. It would also be possible to combine vector and raster data into a hybrid SVG/image output.

Although we've focussed on creating maps of geospatial data, SVG is often used for creating other kinds of graphics. For examples of using it to create geometric and mathematical designs see the pg-svg demo folder. Here's an image of a Lissajous knot generated by this SQL.

Lissajous Knot

You could even use pg-svg to generate charts of non-spatial data (although this would be better handled by a more task-specific API).

Let us know if you find pg-svg useful, or if you have ideas for improving it!

by Martin Davis (Martin.Davis@crunchydata.com) at May 30, 2023 01:00 PM

Crunchy Data

SVG Images from Postgres

PostGIS excels at storing, manipulating and analyzing geospatial data. At some point it's usually desired to convert raw spatial data into a two-dimensional representation to utilize the integrative capabilities of the human visual cortex. In other words, to see things on a map.

PostGIS is a popular backend for mapping technology, so there are many options to choose from to create maps. Data can be rendered to a raster image using a web map server like GeoServer or MapServer; it can be converted to GeoJSON or vector tiles via servers such as pg_featureserv and pg_tileserv and then shipped to a Web browser for rendering by a library such as OpenLayers, MapLibre or Leaflet; or a GIS application such as QGIS can connect to the database and create richly-styled maps from spatial queries.

What these options have in common is that they require external tools which need to be installed, configured and maintained in a separate environment. This can introduce unwanted complexity to a geospatial architecture.

This post presents a simple way to generate maps entirely within the database, with no external infrastructure required.

SVG for the win

A great way to display vector data is to use the Scalable Vector Graphic (SVG) format. It provides rich functionality for displaying and styling geometric shapes. SVG is widely supported by web browsers and other tools.

By including CSS and Javascript it's possible to add advanced styling, custom popups, dynamic behaviour and interaction with other web page elements.

Introducing pg-svg

Generating SVG "by hand" is difficult. It requires detailed knowledge of the SVG specification, and constructing a complex text format in SQL is highly error-prone. While PostGIS has had the function ST_AsSVG for years, it only produces the SVG path data attribute value. Much more is required to create a fully-styled SVG document.

The PL/pgSQL library pg-svg solves this problem! It makes it easy to convert PostGIS data into styled SVG documents. The library provides a simple API as a set of PL/pgSQL functions which allow creating an SVG document in a single SQL query. Best of all, this installs with a set of functions, nothing else required!

Example map of US high points

The best way to understand how pg-svg works is to see an example. We'll create an SVG map of the United States showing the highest point in each state. The map has the following features:

  • All 50 states are shown, with Alaska and Hawaii transformed to better fit the map
  • States are labeled, and filled with a gradient
  • High points are shown at their location by triangles whose color and size indicate the height of the high point.
  • Tooltips provide more information about states and highpoints.

The resulting map looks like this (to see tooltips open the raw image):

The SQL query to generate the map is here. It can be downloaded and run using psql:

psql -A -t -o us-highpt.svg  < us-highpt-svg.sql

The SVG output us-highpt.svg can be viewed in any web browser.

How it Works

Let's break the query down to see how the data is prepared and then rendered to SVG. A dataset of US states in geodetic coordinate system (WGS84, SRID = 4326) is required. We used the Natural Earth states and provinces data available here. It is loaded into a table ne.admin_1_state_prov with the following command:

shp2pgsql -c -D -s 4326 -i -I ne_10m_admin_1_states_provinces.shp ne.admin_1_state_prov | psql

The query uses the SQL WITH construct to organize processing into simple, modular steps. We'll describe each one in turn.

Select US state features

First, the US state features are selected from the Natural Earth boundaries table ne.admin_1_state_prov.

us_state AS (SELECT name, abbrev, postal, geom
  FROM ne.admin_1_state_prov
  WHERE adm0_a3 = 'USA')

Make a US state map

Next, the map is made more compact by realigning the far-flung states of Alaska and Hawaii.
This is done using PostGIS affine transformation functions. The states are made more proportionate using ST_Scale, and moved closer to the lower 48 using ST_Translate. The scaling is done around the location of the state high point, to make it easy to apply the same transformation to the high point feature.

,us_map AS (SELECT name, abbrev, postal,
    -- transform AK and HI to make them fit map
    CASE WHEN name = 'Alaska' THEN
      ST_Translate(ST_Scale(
        ST_Intersection( ST_GeometryN(geom,1), 'SRID=4326;POLYGON ((-141 80, -141 50, -170 50, -170 80, -141 80))'),
        'POINT(0.5 0.75)', 'POINT(-151.007222 63.069444)'::geometry), 18, -17)
    WHEN name = 'Hawaii' THEN
      ST_Translate(ST_Scale(
        ST_Intersection(geom, 'SRID=4326;POLYGON ((-161 23, -154 23, -154 18, -161 18, -161 23))'),
        'POINT(3 3)', 'POINT(-155.468333 19.821028)'::geometry), 32, 10)
    ELSE geom END AS geom
  FROM us_state)

High Points of US states

Data for the highest point in each state is provided as an inline table of values:

,high_pt(name, state, hgt_m, hgt_ft, lon, lat) AS (VALUES
 ('Denali',              'AK', 6198, 20320,  -151.007222,63.069444)
,('Mount Whitney',       'CA', 4421, 14505,  -118.292,36.578583)
...
,('Britton Hill',        'FL',  105,   345,  -86.281944,30.988333)
)

Prepare High Point symbols

The next query does several things:

  • translates the lon and lat location for Alaska and Hawaii high points to match the transformation applied to the state geometry
  • computes the symHeight attribute for the height of the high point triangle symbol
  • assigns a fill color value to each high point based on the height
  • uses ORDER BY to sort the high points by latitude, so that their symbols overlap correctly when rendered
,highpt_shape AS (SELECT name, state, hgt_ft,
    -- translate high points to match shifted states
    CASE WHEN state = 'AK' THEN lon + 18
      WHEN state = 'HI' THEN lon + 32
      ELSE lon END AS lon,
    CASE WHEN state = 'AK' THEN lat - 17
      WHEN state = 'HI' THEN lat + 10
      ELSE lat END AS lat,
    (2.0 * hgt_ft) / 15000.0 + 0.5 AS symHeight,
    CASE WHEN hgt_ft > 14000 THEN '#ffffff'
         WHEN hgt_ft >  7000 THEN '#aaaaaa'
         WHEN hgt_ft >  5000 THEN '#ff8800'
         WHEN hgt_ft >  2000 THEN '#ffff44'
         WHEN hgt_ft >  1000 THEN '#aaffaa'
                             ELSE '#558800'
    END AS clr
  FROM high_pt ORDER BY lat DESC)

Generate SVG elements

The previous queries transformed the raw data into a form suitable for rendering.
Now we get to see pg-svg in action! The next query generates the SVG text for each output image element, as separate records in a result set called shapes.

The SVG elements are generated in the order in which they are drawn - states and labels first, with high-point symbols on top. Let's break it down:

SVG for states

The first subquery produces SVG shapes from the state geometries. The svgShape function produces an SVG shape element for any PostGIS geometry. It also provides optional parameters supporting other capabilities of SVG. Here title specifies that the state name is displayed as a tooltip, and style specifies the styling of the shape. Styling in SVG can be provided using properties defined in the Cascaded Style Sheets (CSS) specification. pg-svg provides the svgStyle function to make it easy to specify the names and values of CSS styling properties.

Note that the fill property value is a URL instead of a color specifier. This refers to an SVG gradient fill which is defined later.

The state geometry is also included in the subquery result set, for reasons which will be discussed below.

,shapes AS (
  -- State shapes
  SELECT geom, svgShape( geom,
    title => name,
    style => svgStyle(  'stroke', '#ffffff',
                        'stroke-width', 0.1::text,
                        'fill', 'url(#state)',
                        'stroke-linejoin', 'round' ) )
    svg FROM us_map

SVG for state labels

Labels for state abbreviations are positioned at the point produced by the ST_PointOnSurface function. (Alternatively, ST_MaximumInscribedCircle could be used.) The SVG is generated by the svgText function, using the specified styling.

  UNION ALL
  -- State names
  SELECT NULL, svgText( ST_PointOnSurface( geom ), abbrev,
    style => svgStyle(  'fill', '#6666ff', 'text-anchor', 'middle', 'font', '0.8px sans-serif' ) )
    svg FROM us_map

SVG for high point symbols

The high point features are displayed as triangular symbols. We use the convenient svgPolygon function with a simple array of ordinates specifying a triangle based at the high point location, with height given by the previously computed svgHeight column. The title is provided for a tooltip, and the styling uses the computed clr attribute as the fill.

  UNION ALL
  -- High point triangles
  SELECT NULL, svgPolygon( ARRAY[ lon-0.5, -lat, lon+0.5, -lat, lon, -lat-symHeight ],
    title => name || ' ' || state || ' - ' || hgt_ft || ' ft',
    style => svgStyle(  'stroke', '#000000',
                        'stroke-width', 0.1::text,
                        'fill', clr  ) )
    svg FROM highpt_shape
)

Produce final SVG image

The generated shape elements need to be wrapped in an <svg> document element. This is handled by the svgDoc function.

The viewable extent of the SVG data needs to be provided by the viewbox parameter. The most common case is to display all of the rendered data. An easy way to determine this is to apply the PostGIS ST_Exrtent aggregate function to the input data (this is why we included the geom column as well as the svg text column). We can include a border by enlarging the extent using the ST_Expand function. The function svgViewBox converts the PostGIS geometry for the extent into SVG format.

We also include a definition for an SVG linear gradient to be used as the fill style for the state features.

SELECT svgDoc( array_agg( svg ),
    viewbox => svgViewbox( ST_Expand( ST_Extent(geom), 2)),
    def => svgLinearGradient('state', '#8080ff', '#c0c0ff')
  ) AS svg FROM shapes;

The output from svgDoc is a text value which can be used anywhere that SVG is supported.

More to Explore

We've shown how the pg-svg SQL function library lets you easily generate map images from PostGIS data right in the database. This can be used as a simple ad-hoc way of visualizing spatial data. Or, it could be embedded in a larger system to automate repetitive map generation workflows.

Although SVG is a natural fit for vector data, there may be situations where producing a map as a bitmap (raster) image makes sense.
For a way of generating raster maps right in the database see this PostGIS Day 2022 presentation. This would be especially appealing where the map is displaying data stored using PostGIS raster data. It would also be possible to combine vector and raster data into a hybrid SVG/image output.

Although we've focussed on creating maps of geospatial data, SVG is often used for creating other kinds of graphics. For examples of using it to create geometric and mathematical designs see the pg-svg demo folder. Here's an image of a Lissajous knot generated by this SQL.

Lissajous Knot

You could even use pg-svg to generate charts of non-spatial data (although this would be better handled by a more task-specific API).

Let us know if you find pg-svg useful, or if you have ideas for improving it!

by Martin Davis (Martin.Davis@crunchydata.com) at May 30, 2023 01:00 PM

May 29, 2023

PostGIS Development

PostGIS 3.3.3, 3.2.5, 3.1.9, 3.0.9 Patch Releases

The PostGIS development team is pleased to provide bug fixes and performance enhancements 3.3.3, 3.2.5, 3.1.9 and 3.0.9 for the 3.3, 3.2, 3.1, and 3.0 stable branches.

by Regina Obe at May 29, 2023 12:00 AM

May 24, 2023

Paul Ramsey

Keynote @ CUGOS Spring Fling

Last month I was invited to give a keynote talk at the CUGOS Spring Fling, a delightful gathering of “Cascadia Users of Open Source GIS” in Seattle. I have been speaking about open source economics at FOSS4G conferences more-or-less every two years, since 2009, and took this opportunity to somewhat revisit the topics of my 2019 FOSS4GNA keynote.

If you liked the video and want to use the materials, the slides are available here under CC BY.

May 24, 2023 04:00 PM

May 17, 2023

Paul Ramsey

MapScaping Podcast: Rasters and PostGIS

Last month I got to record a couple podcast episodes with the MapScaping Podcast’s Daniel O’Donohue. One of them was on the benefits and many pitfalls of putting rasters into a relational database, and it is online now!

TL;DR: most people think “put it in a database” is a magic recipe for: faster performance, infinite scalability, and easy management.

Where the database is replacing a pile of CSV files, this is probably true.

Where the database is replacing a collection of GeoTIFF imagery files, it is probably false. Raster in the database will be slower, will take up more space, and be very annoying to manage.

So why do it? Start with a default, “don’t!”, and then evaluate from there.

For some non-visual raster data, and use cases that involve enriching vectors from raster sources, having the raster co-located with the vectors in the database can make working with it more convenient. It will still be slower than direct access, and it will still be painful to manage, but it allows use of SQL as a query language, which can give you a lot more flexibility to explore the solution space than a purpose built data access script might.

There’s some other interesting tweaks around storing the actual raster data outside the database and querying it from within, that I think are the future of “raster in (not really in) the database”, listen to the episode to learn more!

May 17, 2023 12:00 AM

March 02, 2023

Crunchy Data

Geocoding with Web APIs in Postgres

Geocoding is the process of taking addresses or location information and getting the coordinates for that location. Anytime you route a new location or look up a zip code, the back end is geocoding the location and then using the geocode inside other PostGIS functions to give you the routes, locations, and other data you asked for.

PostGIS comes equipped with an easy way to use the US Census data with the Tiger geocoder. Using the Tiger geocoder requires downloading large amounts of census data and in space-limited databases, this may not be ideal. Using a geocoding web API service can be a space saving solution in these cases.

I am going to show you how to set up a really quick function using plpython3u to hit a web service geocoder every time that we get a new row in the database.

Installing plpython3u

The plpython3u extension comes with Crunchy Bridge or you can add it to your database. To get started run the following:

CREATE EXTENSION  plpython3u;

Creating a function to geocode addresses

In this example, I'll use the US census geocoding API as our web service, and build a function to geocode addresses based on that.

The function puts together parameters to hit the census geocoding API and then parses the resulting object, and returns a geometry:

CREATE OR REPLACE FUNCTION geocode(address text)
RETURNS geometry
AS $$
	import requests
	try:
		payload = {'address' : address , 'benchmark' : 2020, 'format' : 'json'}
		base_geocode = 'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress'
		r = requests.get(base_geocode, params = payload)
		coords = r.json()['result']['addressMatches'][0]['coordinates']
		lon = coords['x']
		lat = coords['y']
		geom = f'SRID=4326;POINT({lon} {lat})'
	except Exception as e:
		plpy.notice(f'address failed: {address}')
		plpy.notice(f'error: {e.message}')
		geom = None
	return geom
$$
LANGUAGE 'plpython3u';

Using this function to geocode Crunchy Data's headquarters:

SELECT ST_AsText(geocode('162 Seven Farms Drive Charleston, SC 29492'));

Deploying this function for new data

But what if we want to automatically run this every time an address is inserted into a table? Let's say we have a table with a field ID, an address, and a point that we want to auto-populate on inserts.

CREATE TABLE addresses (
	fid SERIAL PRIMARY KEY,
	address VARCHAR,
	geom GEOMETRY(POINT, 4326)
);

We can make use of a Postgres trigger to add the geocode before every insert! Triggers are a very powerful way to leverage built in functions to automatically transform your data as it enters the database, and this particular case is a great demo for them!

CREATE OR REPLACE FUNCTION add_geocode()
RETURNS trigger AS
$$
DECLARE
    loc geometry;
BEGIN
    loc := geocode(NEW.address);
    NEW.geom = loc;
    RETURN NEW;
END;
$$
LANGUAGE plpgsql;
CREATE TRIGGER update_geocode BEFORE INSERT ON addresses
    FOR EACH ROW EXECUTE FUNCTION add_geocode();

Now when running an insert, the value is automatically geocoded!

INSERT INTO addresses(address) VALUES ('415 Mission St, San Francisco, CA 94105');

postgres=# SELECT fid, address, ST_AsText(geom) FROM addresses;
 fid |                 address                 |                        geom
-----+-----------------------------------------+----------------------------------------------------
   1 | 415 Mission St, San Francisco, CA 94105 | 0101000020E610000097CD0E2B66995EC0BB004B2729E54240

Summary

If you’re space limited, using a web API based geocoder might be the way to go. Using a geocoder function with triggers on new row inserts will get you geocoded addresses in a snap.

by Jacob Coblentz (Jacob.Coblentz@crunchydata.com) at March 02, 2023 04:00 PM

February 23, 2023

Crunchy Data

Postgres Raster Query Basics

In geospatial terminology, a "raster" is a cover of an area divided into a uniform gridding, with one or more values assigned to each grid cell.

A "raster" in which the values are associated with red, green and blue bands might be a visual image. The rasters that come off the Landsat 7 earth observation satellite have eight bands: red, green, blue, near infrared, shortwave infrared, thermal, mid-infrared and panchromatic.

Database Rasters

Working with raster data via SQL is a little counter-intuitive: rasters don't neatly fit the relational model the way vector geometries do. A table of parcels where one column is the geometry and the others are the owner name, address, and tax roll id makes sense. How should a raster fit into a table? As a row for every pixel? For every scan row? What other values should be associated with each row?

There is no clean relationship between "real world objects" and the database representation of a raster, because a raster has nothing to say about objects, it is just a collection of measurements.

We can squeeze rasters into the database, but doing so makes working with the data more complex. Before loading data, we need to enable PostGIS and the raster module.

CREATE EXTENSION postgis;
CREATE EXTENSION postgis_raster;

Loading Rasters

For this example, we will load raster data for a "digital elevation model" (DEM), a raster with just one band, the elevation at each pixel.

Using the SRTM Tile Grabber I downloaded one tile of old SRTM data. Then using the gdalinfo utility, read out the metadata about the file.

wget https://srtm.csi.cgiar.org/wp-content/uploads/files/srtm_5x5/TIFF/srtm_12_03.zip
unzip srtm_12_03.zip
gdalinfo srtm_12_03.tif

The metadata tells me two useful things for loading the data:

  • The coordinate system of the data is WGS 84.
  • The pixel size is 3 arc-seconds.
  • The pixel type is Int16, so two bytes per pixel.

Knowing that, I can build a raster2pgsql call to load the data into a raster table.

raster2pgsql \
    -I \                 # create a spatial index on the column
    -s 4326 \            # use 4326 (WGS 84) as the spatial reference for the raster
    -t 32x32 \           # tile the raster into 32 by 32 pixel tiles
    srtm_12_03.tif | \   # name of the raster
    psql dem             # target database connection

Once loaded the raster table looks like this on a map.

And it looks like this in the database.

Table "public.srtm_12_03"

 Column |  Type
--------+---------
 rid    | integer
 rast   | raster
Indexes:
    "srtm_12_03_pkey" PRIMARY KEY, btree (rid)
    "srtm_12_03_st_convexhull_idx" gist (st_convexhull(rast))

It's a pretty boring table! Just a bunch of binary raster tiles and a unique key for each.

-- 29768 rows
SELECT Count(*) FROM srtm_12_03;

Those binary raster tiles aren't just opaque blobs though, we can look inside them with the right functions. Here we get a summary of all the raster tiles in the table.

SELECT (ST_SummaryStatsAgg(rast, 1, true)).* FROM srtm_12_03;
count  | 28966088
sum    | 20431360140
mean   | 705.3544869434907
stddev | 561.252765463607
min    | -291
max    | 4371

Tiles, Tiles, Tiles

Remember when we loaded the data with raster2pgsql we specified a "tile size" of 32 by 32 pixels? This has a number of implications.

  • First, at 32x32, a tile of 2-byte Int16 data like our DEM will take up 2048 bytes. This is small enough to fit in the database page size, which means the data will not end up stored in a side table by the TOAST subsystem that handles large row values.
  • Second, our input file had 6000x6000 pixels, which is enough pixels to generate 35156 32x32 tiles. Our table only has 29768 rows, because raster2pgsql does not generate tiles when the contents are all "no data" pixels (as the DEM data is over the ocean).

The loaded data looks like this.

Notice how small each tile is. As a general rule, when working with raster data queries,

  • the first step will be to efficiently find the relevant tile(s);
  • the second step will be to use the tiles to find the answer you want.

Finding tiles efficiently means using spatial index, and the spatial index definition as we saw above is this:

"srtm_12_03_st_convexhull_idx" gist (st_convexhull(rast))

This is a functional index, which means in order to access it, we need to copy the functional part: st_convechull(rast) when forming our query.

The ST_ConvexHull(raster) converts a raster tile into a polygon defining the boundary of the tile. When querying raster tables, you will use this function a great deal to convert rasters into polygons suitable for querying a spatial index.

Point Query

The simplest raster query is to take a point, and find the value of the raster under that point.

Here is a point table with one point in it:

CREATE TABLE mappoint AS
SELECT ST_Point(-123.7273, 47.8467, 4326)::geometry(Point, 4326) AS geom,
       1 AS fid;

The nice thing about points is that they only hit one tile at a time. So we don't have to think too hard about what to do with our tile sets.

SELECT ST_Value(srtm.rast, pt.geom)
FROM srtm_12_03 srtm
JOIN mappoint pt
  ON ST_Intersects(pt.geom, ST_ConvexHull(srtm.rast))
 st_value
----------
     1627

Here we use the ST_ConvexHull(raster) function to get access to our spatial index on the raster table, and the ST_Intersects(geom, geom) function to test the condition.

The ST_Value(raster, geom) function reads the pixel value from the raster at the location of the point.

Polygon Query

Summarizing rasters under polygons is more involved than reading point values, because polygons will frequently overlap multiple tiles, so you have to think in terms of "sets of raster tiles" instead of "the raster" when building your query.

  • Then we will summarize the clipped tiles, to get the average elevation in our polygon.

The final complete query looks like this.

WITH clipped_tiles AS (
  SELECT ST_Clip(srtm.rast, ply.geom) AS rast, srtm.rid
  FROM srtm_12_03 srtm
  JOIN mappoly ply
    ON ST_Intersects(ply.geom, ST_ConvexHull(srtm.rast))
)
SELECT (ST_SummaryStatsAgg(rast, 1, true)).*
  FROM clipped_tiles;
count  | 362369
sum    | 388175193
mean   | 1071.2152336430545
stddev | 441.7982032761408
min    | 108
max    | 2374

Conclusion

Working with database rasters analytically can be challenging, particularly if you are used to thinking about them as single, unitary coverages. Remember to apply the basic rules of database rasters:

  • Find the chips you need to answer your query.
  • Make sure to use ST_ConvexHull(raster) to drive a spatial index filter.
  • Assemble the chips as needed to answer the query (you might need to use the ST_Union(raster) aggregate).
  • Carry out your actual raster query.

by Paul Ramsey (Paul.Ramsey@crunchydata.com) at February 23, 2023 04:00 PM

February 10, 2023

Crunchy Data

Temporal Filtering in pg_featureserv with CQL

In a previous post we announced the CQL filtering capability in pg_featureserv. It provides powerful functionality for attribute and spatial querying of data in PostgreSQL and PostGIS.

Another important datatype which is often present in datasets is temporal. Temporal datasets contain attributes which are dates or timestamps. The CQL standard defines some special-purpose syntax to support temporal filtering. This allows pg_featureserv to take advantage of the extensive capabilities of PostgreSQL for specifying queries against time-valued attributes. This post in the CQL series will show some examples of temporal filtering in pg_featureserv.

CQL Temporal filters

Temporal filtering in CQL is provided using temporal literals and conditions.

Temporal literal values may be dates or timestamps:

2001-01-01
2010-04-23T01:23:45

Note: The temporal literal syntax is based on an early version of the OGC API Filter and CQL standard. The current draft CQL standard has a different syntax: DATE('1969-07-20') and TIMESTAMP('1969-07-20T20:17:40Z'). It also supports intervals: INTERVAL('1969-07-16', '1969-07-24'). A subsequent version of pg_featureserv will support this syntax as well.

Temporal conditions allow time-valued properties and literals to be compared via the standard boolean comparison operators <,>,<=,>=,=,<> and the BETWEEN..AND operator:

start_date >= 2001-01-01
event_time BETWEEN 2010-04-22T06:00 AND 2010-04-23T12:00

The draft CQL standard provides dedicated temporal operators, such as T_AFTER, T_BEFORE, T_DURING, etc. A future version of pg_featureserv will likely provide these operators.

Publishing Historical Tropical Storm tracks

We'll demonstrate temporal filters using a dataset with a strong time linkage: tracks of tropical storms (or hurricanes). There is a dataset of Historical Tropical Storm Tracks available here.

The data requires some preparation. It is stored as a set of records of line segments representing 6-hour long sections of storm tracks. To provide simpler querying we will model the data using a single record for each storm, with a line geometry showing the entire track and attributes for the start and end time for the track.

The data is provided in Shapefile format. As expected for a worldwide dataset, it is in the WGS84 geodetic coordinate system (lat/long). In PostGIS this common Spatial Reference System is assigned an identifier (SRID) of 4326.

The PostGIS shp2pgsql utility can be used to load the dataset into a spatial table called trop_storm_raw. The trop_storm_raw table is a temporary staging table allowing the raw data to be loaded and made available for the transformation phase of data preparation.

shp2pgsql -c -D -s 4326 -i -I -W LATIN1 "Historical Tropical Storm Tracks.shp" public.trop_storm_raw | psql -d database

The options used are:

  • -c - create a new table
  • -D - use PostgreSQL dump format to load the data
  • -s - specify the SRID of 4326
  • -i - use 32-bit integers
  • -I - create a GIST index on the geometry column (this is not strictly necessary, since this is just a temporary staging table)
  • -W - specifies the encoding of the input attribute data in the DBF file

Next, create the table having the desired data model:

CREATE TABLE public.trop_storm (
    btid int PRIMARY KEY,
    name text,
    wind_kts numeric,
    pressure float8,
    basin text,
    time_start timestamp,
    time_end timestamp,
    geom geometry(MultiLineString, 4326)
);

It's good practice to add comments to the table and columns. These will be displayed in the pg_featureserv Web UI.

COMMENT ON TABLE public.trop_storm IS 'This is my spatial table';
COMMENT ON COLUMN public.trop_storm.geom IS 'Storm track LineString';
COMMENT ON COLUMN public.trop_storm.name IS 'Name assigned to storm';
COMMENT ON COLUMN public.trop_storm.btid IS 'Id of storm';
COMMENT ON COLUMN public.trop_storm.wind_kts IS 'Maximum wind speed in knots';
COMMENT ON COLUMN public.trop_storm.pressure IS 'Minumum pressure in in millibars';
COMMENT ON COLUMN public.trop_storm.basin IS 'Basin in which storm occured';
COMMENT ON COLUMN public.trop_storm.time_start IS 'Timestamp of storm start';
COMMENT ON COLUMN public.trop_storm.time_end IS 'Timestamp of storm end';

Now the power of SQL can be used to transform the raw data into the simpler data model. The track sections can be combined into single tracks with a start and end time using the following query.

  • The original data represents the track sections as MultiLineStrings with single elements. The element is extracted using ST_GeometryN so that the result of aggregating them using ST_Collect is a MultiLineString, not a GeometryCollection. (An alternative is to aggregate into a GeometryCollection and use ST_CollectionHomogenize to reduce it to a MultiLineString.)
  • The final ST_Multi ensures that all tracks are stored as MultiLineStrings, as required by the type constraint on the geom column.
  • the filter condition time_end - time_start < '1 year'::interval removes tracks spanning the International Date Line.
WITH data AS (
 SELECT btid, name, wind_kts, pressure, basin, geom,
    make_date(year::int, month::int, day::int) + ad_time::time AS obs_time
 FROM trop_storm_raw ORDER BY obs_time
),
tracks AS (
  SELECT btid,
    MAX(name) AS name,
    MAX(wind_kts) AS wind_kts,
    MAX(pressure) AS pressure,
    MAX(basin) AS basin,
    MIN(obs_time) AS time_start,
    MAX(obs_time) AS time_end,
    ST_Multi( ST_LineMerge( ST_Collect( ST_GeometryN(geom, 1)))) AS geom
  FROM data GROUP BY btid
)
INSERT INTO trop_storm
SELECT * FROM tracks WHERE time_end - time_start < '1 year'::interval;

This is a small dataset, and pg_featureserv does not require one, but as per best practice we can create a spatial index on the geometry column:

CREATE INDEX trop_storm_gix ON public.trop_storm USING GIST ( geom );

Once the trop_storm table is created and populated, it can be published in pg_featureserv. Issuing the following request in a browser shows the feature collection in the Web UI:

http://localhost:9000/collections.html

tropstorm

http://localhost:9000/collections/public.trop_storm.html

tropstorm

The dataset can be viewed using pg_featureserv's built-in map viewer (note that to see all 567 records displayed it is probably necessary to increase the limit on the number of response features):

http://localhost:9000/collections/public.trop_storm/items.html?limit=1000

publictropstorm

Querying by Time Range

That's a lot of storm tracks. It would be easier to visualize a smaller number of tracks. A natural way to subset the data is by querying over a time range. Let's retrieve the storms between the start of 2005 and the end of 2009. This is done by adding a filter parameter with a CQL expression against the dataset temporal property time_start (storms typically do not span the start of years). To query values lying between a range of times it is convenient to use the BETWEEN operator. The filter condition is time_start BETWEEN 2005-01-01 AND 2009-12-31. The full request is:

http://localhost:9000/collections/public.trop_storm/items.html?filter=time_start BETWEEN 2005-01-01 AND 2009-12-31&limit=100

Submitting this query produces a result with 68 tracks:

tropstormtracks

Querying by Time and Space

Temporal conditions can be combined with other kinds of filters. For instance, we can execute a spatio-temporal query by using a temporal condition along with a spatial condition. In this example, we query the storms which occurred in 2005 and after in Florida. The temporal condition is expressed as time_start > 2005-01-01.

The spatial condition uses the INTERSECTS predicate to test whether the line geometry of a storm track intersects a polygon representing the (simplified) coastline of Florida. The polygon is provided as a geometry literal using WKT. (For more information about spatial filtering with CQL in pg_featureserv see this blog post.)

POLYGON ((-81.4067 30.8422, -79.6862 25.3781, -81.1609 24.7731, -83.9591 30.0292, -85.2258 29.6511, -87.5892 29.9914, -87.5514 31.0123, -81.4067 30.8422))

polygon

Putting these conditions together in a boolean expression using AND, the request to retrieve the desired tracks from pg_featureserv is:

http://localhost:9000/collections/public.trop_storm/items.html?filter=time_start > 2005-01-01 AND INTERSECTS(geom, POLYGON ((-81.4067 30.8422, -79.6862 25.3781, -81.1609 24.7731, -83.9591 30.0292, -85.2258 29.6511, -87.5892 29.9914, -87.5514 31.0123, -81.4067 30.8422)) )&limit=100

This query produces a result with only 9 tracks, all of which cross Florida:

temporalfiltering

Try it yourself!

CQL temporal filtering is included in the forthcoming pg_featureserv Version 1.3. But you can try it out now by downloading the latest build. Let us know what use cases you find for CQL temporal filtering! Crunchy Data offers full managed PostGIS in the Cloud, with Container apps to run pg_featureserv. Try it today.

by Martin Davis (Martin.Davis@crunchydata.com) at February 10, 2023 03:00 PM

February 02, 2023

Paul Ramsey

When Proj Grid-Shifts Disappear

Last week a user noted on the postgis-users list (paraphrase):

I upgraded from PostGIS 2.5 to 3.3 and now the results of my coordinate transforms are wrong. There is a vertical shift between the systems I’m using, but my vertical coordinates are unchanged.

Hmmm.

PostGIS gets all its coordinate reprojection smarts from the proj library. The user’s query looked like this:

SELECT ST_AsText(
    ST_Transform('SRID=7405;POINT(545068 258591 8.51)'::geometry, 
    4979
    ));

“We just use proj” is a lot less certain and stable an assertion than it appears on the surface. In fact, PostGIS “just uses proj” for proj versions from 4.9 all the way up to 9.2, and there has been a lot of change to the proj library over that sweep of releases.

  • The API radically changed around proj version 6, and that required a major rework of how PostGIS called the library.
  • The way proj dereferenced spatial reference identifiers into reprojection algorithms changed around then too (it got much slower) which required more changes in how we interacted with the library.
  • More recently the way proj handled “transformation grids” changed, which was the source of the complaint.

Exploring Proj

The first thing to do in debugging this “PostGIS problem” was to establish if it was in fact a PostGIS problem, or a problem in proj. There are commandline tools in proj to query what pipelines the system will use for a transform, and what the effect on coordinates will be, so I can take PostGIS right out of the picture.

We can run the query on the commandline:

echo 545068 258591 8.51 | cs2cs 'EPSG:7405' 'EPSG:4979'

Which returns:

52d12'23.241"N  0d7'17.603"E 8.510

So directly using proj we are seeing the same problem as in PostGIS SQL: no change in the vertical dimension, it goes in at 8.51 and comes out at 8.51. So the problem is not PostGIS, is is proj.

Transformation Grids

Cartographic transformations are nice deterministic functions, they take in a longitude and latitude and spit out an X and a Y.

(x,y) = f(theta, phi)
(theta, phi) = finv(x, y)

But not all transformations are cartographic transformations, some are transformation between geographic reference systems. And many of those are lumpy and kind of random.

For example, the North American 1927 Datum (NAD27) was built from classic survey techniques, starting from the “middle” (Kansas) and working outwards, chain by chain, sighting by sighting. The North American 1983 Datum (NAD83) was built with the assistance of the first GPS units. The accumulated errors of survey over distance are not deterministic, they are kind of lumpy and arbitrary. So the transformation from NAD27 to NAD83 is also kind of lumpy and arbitrary.

How do you represent lumpy and arbitrary transformations? With a grid! The grid says “if your observation falls in this cell, adjust it this much, in this direction”.

For the NAD27->NAD83 conversion, the NADCON grids have been around (and continuously improved) for a generation.

Here’s a picture of the horizontal deviations in the NADCON grid.

Transformations between vertical systems also frequently require a grid.

So what does this have to do with our bug? Well, the way proj gets its grids changed in version 7.

Grid History

Proj grids have always been a bit of an outlier. They are much larger than just the source code is. They are localized in interest (someone in New Zealand probably doesn’t need European grids), not everyone needs all the grids. So historically they were distributed in zip files separately from the code.

This is all well and good, but software packagers wanted to provide a good “works right at install” experience to their end users, so they bundled up the grids into the proj packages.

As more and more people consumed proj via packages and software installers, the fact that the grids were “separate” from proj became invisible to the end users: they just download software and it works.

This was fine while the collection of grids was a manageable size. But it is not manageable any more.

In working through the GDALBarn project to improve proj, Even Roualt decided to find all the grids that various agencies had released for various places. It turns out, there are a lot more grids than proj previously bundled. Gigabytes more.

Grid CDN

Simply distributing the whole collection of grids as a default with proj was not going to work anymore.

So for proj 7, Even proposed moving to a download-on-demand model for proj grids. If a transformation request requires a grid, proj will attempt to download the necessary grid from the internet, and save it in a local cache.

Now everyone can get the very best possible tranformation between system, everywhere on the globe, as long as they are connected to the internet.

Turn It On!

Except… the network grid feature is not turned on by default! So for versions of proj higher than 7, the software ships with no grids, and the software won’t check for grids on the network… until you turn on the feature!

There are three ways to turn it on, I’m going to focus on the PROJ_NETWORK environment variable because it’s easy to toggle. Let’s look at the proj transformation pipeline from our original bug.

projinfo -s EPSG:7405 -t EPSG:4979

The projinfo utility reads out all the possible transformation pipelines, in order of desirability (accuracy) and shows what each step is. Here’s the most desireable pipeline for our transform.

+proj=pipeline
  +step +inv +proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000
        +y_0=-100000 +ellps=airy
  +step +proj=hgridshift +grids=uk_os_OSTN15_NTv2_OSGBtoETRS.tif
  +step +proj=vgridshift +grids=uk_os_OSGM15_GB.tif +multiplier=1
  +step +proj=unitconvert +xy_in=rad +xy_out=deg
  +step +proj=axisswap +order=2,1

This transform actually uses two grids! A horizontal and a vertical shift. Let’s run the shift with the network explicitly turned off.

echo 545068 258591 8.51 | PROJ_NETWORK=OFF cs2cs 'EPSG:7405' 'EPSG:4979'

52d12'23.241"N  0d7'17.603"E 8.510

Same as before, and the elevation value is unchanged. Now run with PROJ_NETWORK=ON.

echo 545068 258591 8.51 | PROJ_NETWORK=ON cs2cs 'EPSG:7405' 'EPSG:4979'

52d12'23.288"N  0d7'17.705"E 54.462

Note that the horizontal and vertical results are different with the network, because we now have access to both grids, via the CDN.

No Internet?

If you have no internet, how do you do grid shifted transforms? Well, much like in the old days of proj, you have to manually grab the grids you need. Fortunately there is a utility for that now that makes it very easy: projsync.

You can just download all the files:

projsync --all

Or you can download a subset for your area of concern:

projsync --bbox 2,49,2,49

If you don’t want to turn on network access via the environment variable, you can hunt down the proj.ini file and flip the network = on variable.

February 02, 2023 08:00 AM

January 12, 2023

Crunchy Data

Fun with Letters in PostGIS 3.3!

Working at Crunchy Data on the spatial team, I'm always looking for new features and fun things to show on live demos. I recently started playing around with ST_Letters and wanted to jot down some quick code samples for playing around with this feature, introduced in PostGIS 3.3. These examples are super easy to use, they don't need any data!

The screenshots shown below came from pgAdmin's geometry viewer and will also work with other query GUI tools like QGIS or DBeaver.

ST_Letters

Here's a simple example to get started with ST_Letters. This will work on any Postgres database, running the PostGIS extension version 3.3+.

Select ST_Letters('PostGIS'); postgis letters

It's also possible to overlay letters on a map, just like any other polygon. Since the default for ST_Letters results in a polygon starting at the baseline at the origin of the chosen projection, with a maximum height of 100 "units" (from the bottom of the descenders to the tops of the capitals).

letters on top

That's not ideal. We need a way to both move it and resize it.

First, we want to make a point in the middle of San Francisco in order to serve as a centroid for where we want to move the letters, and we also want to rescale the letters in order to approximately fit over the City of San Francisco. Using the formula for converting units in WGS84 to meters, 0.001 works approximately well enough to fit over the San Francisco Bay Area.

Next we use ST_Translate in order to move the letters from the top of the map to fit over the Bay Area. Finally, mostly because it looks cool, we use ST_Rotate to rotate the polygon 45 degrees.

WITH
san_fran_pt AS (
  SELECT ST_Point(-122.48, 37.758, 4326) AS geom),
letters AS (
  SELECT ST_Scale(ST_SetSRID(
           ST_Letters('San Francisco'), 4326),
           0.001, 0.001) AS geom),
letters_geom AS (
    SELECT ST_Translate(
            letters.geom,
            ST_X(san_fran_pt.geom) - ST_X(ST_Centroid(letters.geom)),
            ST_Y(san_fran_pt.geom) - ST_Y(ST_Centroid(letters.geom))
        ) AS geom
    FROM letters, san_fran_pt
)
SELECT ST_Rotate(geom, -pi() / 4, ST_Centroid(geom))
FROM letters_geom;

letters on map

ST_ConcaveHull demo'd with ST_Letters

A great use case for ST_Letters is for demoing PostGIS functions. In this post, I'm going to demo the function ST_ConcaveHull, which creates a concave polygon which encloses the vertices of a target geometry. ST_ConcaveHull was recently updated in PostGIS 3.3.0, in order to use GEOS 3.11, which makes the input parameters easier to understand and results in a large speed upgrade. Here's a short demo of how different parameters of param_pctconvex and param_allow_holes for ST_ConcaveHull operate on points generated by ST_GeneratePoints and ST_Letters.

First, let's generate a table of randomly generated points that fill in the letters in 'postgis'.

CREATE TABLE public.word_pts AS
WITH word AS (
  SELECT ST_Letters('postgis') AS geom
  ),
letters AS ( -- dump letter multipolygons into individual polygons
  SELECT (ST_Dump(word.geom)).geom
  FROM word
  )
SELECT
  letters.geom AS polys,
  ST_GeneratePoints(letters.geom, 100) AS pts
FROM letters;

SELECT pts FROM word_pts.pts

word points

Then, we set the convexity to a fairly high parameter (param_pctconvex=0.75, indicating a highly convex shape), and don't allow there to be holes in the shape (param_allow_holes=false)

SELECT ST_ConcaveHull(pts, 0.75, false) FROM word_pts;

concave .75

Doesn't look much like 'postgis'!

Next, we reduce the convexity, but don't allow holes in the shape.

SELECT ST_ConcaveHull(pts, 0.5, false) FROM word_pts;

concave .5 false

A little better, but still hard to recognize 'postgis'. What if we allowed holes?

SELECT ST_ConcaveHull(pts, 0.5, true) FROM word_pts;

This starts to look a bit more like the word 'postgis', with the hole in 'p' being clear.

concave .5

As we start to make the shape more concave, it begins to take on more and more recognizable as 'postgis'....until it doesn't and starts to look closer to modern art.

SELECT ST_ConcaveHull(pts, 0.35, true) FROM word_pts;

concave .35

SELECT ST_ConcaveHull(pts, 0.05, true) FROM word_pts;

concave .05

Polygons too!

ST_ConcaveHull is also useful on multipolygons, and follows the same properties as demo'd on multipoints. It's important to note that if there are already holes in the existing multipolygon, setting param_allow_holes=false will still create convex polygons with "holes" in the middle, following the original polygon. The concave hulls will always contains the original polygons!

SELECT ST_ConcaveHull(ST_Letters('postgis'), 0.5, false);

concave .5

As the convexity decreases and holes are allowed, the shape looks more and more like the original polygons in the original table.

SELECT ST_ConcaveHull(ST_Letters('postgis'), 0.1, true);

Concave .1

ST_TriangulatePolygon

The last demo here is the function ST_TriangulatePolygon, new in PostGIS 3.3. This function computes the "best quality" triangulation of a polygon (and also works on multipolygons too!). This can be extremely useful for computing meshes of polygons in a quick and efficient manner.

SELECT ST_TriangulatePolygon(ST_Letters('postgis'));

ST_TriangulatePolygon

Summary

ST_Letters provides a useful starting point for demoing functions on points and polygons. The new improvements in ST_ConcaveHull make it more useful for generating concave hulls of geometries and they are significantly more intuitive to use. ST_TriangulatePolygon can be useful for finding meshes of polygons and multipolygons. The team at Crunchy Data will continue to make important contributions to PostGIS in order to help our users create interesting and innovative open source solutions!

by Jacob Coblentz (Jacob.Coblentz@crunchydata.com) at January 12, 2023 03:00 PM

January 06, 2023

Crunchy Data

Timezone Transformation Using Location Data & PostGIS

Imagine your system captures event data from all over the world but the data all comes in UTC time giving no information about the local timing of an event. How can we quickly convert between the UTC timestamp and local time zone using GPS location? We can quickly solve this problem using PostgreSQL and PostGIS.

This example assumes you have a Postgres database running with PostGIS. If you’re new to PostGIS, see PostGIS for Newbies.

Steps we will follow

  1. Timezone Shape file Overview: For World Timezone shape file, I have been following a really nice project by Evan Siroky, Timezone Boundary Builder. We’ll download the timezones-with-oceans.shapefile.zip from this location.
  2. Load Shape file: Using shp2pgsql, convert shape file to sql to create timezones_with_ocean table.
  3. PostgreSQL internal view pg_timezone_names: Understand pg_timezone_names view.
  4. Events table and insert sample data: Create events table and insert sample data.
  5. Transformation Query: Transform event UTC timestamp to event local timestamp.

Overview of data relationship

Below is an overview of the data relationship and join conditions we will be using.

timzone_flow.png

Timezone Shape file Overview

A “shape file” commonly refers to a collection of files with .shp, .shx, .dbf, and other extensions on a common prefix name, which in our case is combined-shapefile-with-oceans.*. **combined-shapefile-with-oceans contains polygons with the boundaries of the world's timezones. With this data we can start our process.

Load Shape file

We will be using shp2pgsql to generate sql file from shape file to create public.timezones_with_ocean and inserts data in a table. The table contains fields gid, tzid and geometry.

Export the Host, user, password variables

export PGHOST=p.<pgcluster name>.db.postgresbridge.com
export PGUSER=<DBUser>
export PGPASSWORD=<dbPassword>

Create sql file from shape file

shp2pgsql -s 4326  "combined-shapefile.shp" public.timezones_with_oceans   > timezone_shape.sql

Create public.timezones_with_ocean and load timestamp data

psql -d timestamp -f timezone_shape.sql

Query a bit of sample data

SELECT tzid, ST_AsText(geom), geom FROM public.timezone_with_oceans limit 10;

Visualize Sample data

sample data

Using PgAdmin highlight geom column and click on eye icon visualize the geometry on map showing below.

Geometry in pgAdmin

PostgreSQL internal view pg_timezone_names

PostgreSQL provides a view of pg_timezone_names with a list of time zone names recognized by SET TIMEZONE. By default, PostgreSQL also provides their associated abbreviations, UTC offsets, and daylight-savings status, which our clients need to know.

pg_timezone_names view columns description

Column Type Description
name text Time zone name
abbrev text Time zone abbreviation
utc_offset interval Offset from UTC (positive means east of Greenwich)
is_dst bool True if currently observing daylight savings

pg_timezone sample data

Sample data

Events table and insert sample data

Now that we have the timezone shape file loaded, we can create an event table, load sample transaction data, and apply a timestamp conversion transformation query.

CREATE TABLE IF NOT EXISTS public.events
(
    event_id bigint NOT NULL,
    eventdatetime timestamp without time zone NOT NULL,
	event_type varchar(25) not null,
    latitude double precision NOT NULL,
    longitude double precision NOT NULL,
    CONSTRAINT events_pkey PRIMARY KEY (event_id)
);

INSERT INTO public.events(
	event_id, eventdatetime, event_type, latitude, longitude)
	VALUES (10086492,'2021-08-17 23:17:05','Walking',34.894089,-86.51148),
(50939,'2021-08-19 10:27:12','Hiking',34.894087,-86.511484),
(10086521,'2021-09-09 19:32:37','Swiming',34.642584,-86.761291),
(22465493,'2021-09-30 11:43:34','Swiming',33.611151,-86.799522),
(22465542,'2021-11-26 22:40:44.197','Swiming',34.64259,-86.761452),
(22465494,'2021-09-30 11:43:34','Hiking',33.611151,-86.799522),
(10087348,'2021-07-01 13:42:15','Swiming',25.956098,-97.535303),
(22466679,'2021-09-01 12:25:06','Hiking',25.956112,-97.535304),
(22466685,'2021-09-02 13:41:07','Swiming',25.956102,-97.535305),
(10088223,'2021-11-29 13:19:53','Hiking',25.956097,-97.535303),
(22246192,'2021-06-16 22:21:23','Walking',37.083726,-113.577984),
(9844188,'2021-06-23 20:18:43','Swiming',37.1067,-113.561401),
(22246294,'2021-06-25 21:50:06','Walking',37.118719,-113.598038),
(22246390,'2021-07-01 18:15:54','Hiking',37.109579,-113.562923),
(9844332,'2021-07-04 19:11:13','Walking',37.251538,-113.614708),
(9845242,'2021-11-04 13:25:40.425','Swiming',37.251542,-113.614699),
(84843,'2021-11-23 14:33:20','Swiming',37.251541,-113.614698),
(22247674,'2021-12-21 14:31:15','Swiming',37.251545,-113.614691),
(22246714,'2021-08-09 14:46:51','Swiming',37.109597,-113.562912),
(9845116,'2021-10-18 14:59:51','Swiming',37.082777,-113.554991);

Sample Event Data event data

Transformation Query

Now we can convert the UTC timestamp to the local time for an event. Using PostGIS function St_Intersects, we can find the timezone_with_oceans.geom polygon in which an event point lies. This gives the name of the timezone where the event occurred. To create our transformation query:

  • First we create the location geometry using Longitude and Latitude from the events table.

  • Using PostGIS function St_Intersects, we will find common points between timezone_with_oceans.geom and an event’s location geometry giving us information on where the event occurred.

  • Join pg_timezone_names to timezone_with_oceans on name and tzid respectively, to retrieve abbrev, utc_offset, and is_dst fields from pg_timezone_names.

  • Using PostgreSQL AT TIME ZONE operator and pg_timezone_name, we convert UTC event timestamp to local event timestamp completing the process, e.g.

    timestamp '2021-07-05 00:59:12' at time zone 'America/Denver' → 2021-07-04 18:59:12+00’

Transformation Query SQL:

SELECT event_id, latitude, longitude, abbrev,
       utc_offset,is_dst, eventdatetime,
       ((eventdatetime::timestamp WITH TIME ZONE AT TIME ZONE abbrev)::timestamp WITH TIME ZONE)
           AS eventdatetime_local
FROM public.events
JOIN timezone_with_oceans ON ST_Intersects(ST_Point(longitude, latitude, 4326) , geom)
JOIN pg_timezone_names ON tzid = name;

local timezone data

Closing Thoughts

PostgreSQL and PostGIS allow you to easily and dynamically solve timezone transformation. I hope this blog was helpful, and we at Crunchy Data wish you happy learning.

by Rekha Khandhadia (Rekha.Khandhadia@crunchydata.com) at January 06, 2023 03:00 PM

December 04, 2022

Boston GIS (Regina Obe, Leo Hsu)

PostGIS Day 2022 Videos are out and some more highlights

Elizabeth Chistensen already gave a succinct summary of some of the PostGIS Day 2022 presentations, which you can see here.

There were many case study presentations which involved use of PostGIS, QGIS, OpenStreetMap, and pgRouting (and other extensions that extend PostGIS) as well as many "How to" videos. There were also talks on "How PostGIS is made". I'll highlight some of these, which overlap with Elizabeth's list but different angle of view.

Continue reading "PostGIS Day 2022 Videos are out and some more highlights"

by Regina Obe (nospam@example.com) at December 04, 2022 09:27 PM

December 02, 2022

Crunchy Data

PostGIS Day 2022

Crunchy Data hosted the 4th annual PostGIS Day on November 17, 2022. PostGIS Day always comes a day after GIS Day which occurs annually on the 3rd Wednesday of November.

We had speakers from 10 different countries and attendees from more than 70 countries.

PostGIS is the most popular spatial relational database worldwide with:

  • An extensive catalog of spatial functions
  • Rich ecosystem of in-db extensions for routing, event management, external database linkage, point clouds, rasters and more
  • Numerous web frameworks for serving tiles and vector images
  • Tools for data loading and processing
  • Easy integration with QGIS, the most popular open-source mapping software

PostGIS is in our Everyday Lives

What blew me away this year is how PostGIS touches so many parts of our everyday lives. From high speed internet, to water and flood management, there’s PostGIS supporting major parts of the infrastructure we depend on every day.

Water, Soil, Floods, and Environment

We heard a talk about the GISwater project, which is open source asset management for water and wastewater tracking. Helping humanity, bringing the world water resources, using the open source tools. What could be better? This project just gives everyone all the feels.

In a similar way, my ears really perked up with the Vizzuality talk on using PostGIS for conversation efforts, tracking food supply chains, and sustainability.

We were really lucky to have two federal agencies join us as well. USDA talked about using PostGIS as the engine behind the Dynamic Soils Hub project, which tracked a number of key soil changes like erosion and farmland loss across America. A developer who works alongside the National Flood Insurance Program talked about some of his work to collect several massive open data sets and merge them into a set of building outlines for the entire country.

Telling stories about people

I also really appreciated several talks that went a little bit outside the box to talk about how PostGIS can be used in a more people focused context.  We had a nice talk about using PostGIS/QGIS to look at how you can explore infrastructure and how it impacts social inequity and health outcomes. There was also a great talk about routing people's movements outside roads, like on foot or inside buildings. Another talk went outside the box, or should I say inside the goal box, with a talk on how geospatial data is being collected and used in hockey and sports.

Developing nations

We were really fortunate to get a couple talks on how developers in Africa are using PostGIS. We had a talk on using QField, QGIS, and PostGIS for urban planning in Nigeria. A developer from Tanzania showed an isochrone map plugin he wrote for QGIS. Isochrone maps show distance from a certain point with time considered.

Canadian telecom

We had two talks from Canada, where they’re aiming to have the entire country covered by high speed internet by 2030. One of the talks described building a design system in QGIS and PostGIS and even training internal designers to use these tools. We had a second talk about the telecom industry, this one more focused on getting things up to scale for backing a really large enterprise.

Tooling Showcases

PosGIS Day also had a really broad set of talks about ecosystem tools. Seeing these all in total, you realize how big the world of PostGIS is and how many people are building large scale applications out of geospatial data.

PostGIS at scale

  • pgSTAC, an asset catalog used by the Microsoft Planetary Computer and NASA projects
  • Open Street Maps loading, tuning and tips for performance
  • dbt data loading and processing pipeline framework
  • pg_eventserv, an extension for doing real time updates and web sockets

PostGIS functions and tooling

Ecosystem projects

Thanks to everyone who participated this year! If you missed it, plan to join us next year. Mark your calendar, we’ll open a call for papers in September of 2023. Videos are linked above or available as a full playlist on Crunchy Data’s YouTube channel.

PostGIS at Crunchy Data

PostGIS is a supported extension with Crunchy Certified Postgres and is packaged with our products on traditional infrastructure, Kubernetes, and our fully managed Crunchy Bridge. Crunchy Data supports a variety of enterprise clients using PostGIS in production. If you’re using PostGIS and are looking for a host or supported distribution, contact us, we’d love to chat.

by Elizabeth Christensen (Elizabeth.Christensen@crunchydata.com) at December 02, 2022 03:00 PM